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Abstract
Simulation studies, especially neutral comparison studies, are crucial for evaluating and
comparing statistical methods as they investigate whether methods work as intended and
can guide an appropriate method choice. Typically, the term simulation refers to paramet-
ric simulation, i.e. computer experiments using pseudo-random numbers. For these, the
full data-generating process (DGP) and outcome-generating model (OGM) are known
within the simulation. However, the specification of realistic DGPs might be difficult in
practice leading to oversimplified assumptions. The problem is more severe for higher-
dimensional data as the number of parameters to specify typically increases with the
number of variables in the data. Plasmode simulation, which is a combination of resam-
pling covariates from a real-life dataset from the DGP of interest together with a specified
OGM is often claimed to solve this problem since no explicit specification of the DGP is
necessary. However, this claim is not well supported by empirical results. Here, paramet-
ric and Plasmode simulations are compared in the context of a method comparison study
for binary classification methods. We focus on studies conducted with some specific data
type or application in mind whose true, unknown data-generating mechanism is mim-
icked. The performance of Plasmode and parametric comparison studies for estimating
classifier performance is compared as well as their ability to reproduce the true method
ranking. The influence of misspecifications of the DGP on the results of parametric sim-
ulation and of misspecifications of the OGM on the results of parametric and Plasmode
simulation are investigated. Moreover, different resampling strategies are compared for
Plasmode comparison studies. The study finds that misspecifications of the DGP and
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OGM negatively influence the ability of the comparison studies to estimate the classifica-
tion performances and method rankings. The best choice of the resampling strategy in
Plasmode simulation depends on the concrete scenario.

Introduction
Simulation studies are a crucial tool in evaluating and comparing the performance of statis-
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tical methods. They can provide useful insights into the behavior of the methods in certain
situations. Neutral method comparison studies, i.e. comparison studies evaluating existing
methods outside the context of proposing a new method, are particularly important to ensure
that methods work as expected and for making an informed method choice for an analysis
task at hand [1,2].

Most commonly, the term simulation is used to refer to parametric simulation. That
is, computer experiments based solely on pseudo-random data generation according to
data-generating processes (DGP) and outcome-generating models (OGM) specified by the
researchers conducting the simulation study. Often, covariate data is generated from a spec-
ified distribution using a pseudo-random number generator. Then, the specified OGM is
applied to the generated covariate data to generate observations of a target variable. This step
might again include some pseudo-random number generation, e.g. to produce some noise in
the target variable. This procedure has the advantage of full control over the data generation
and full knowledge of all parameters within the simulation, which enables the calculation of
performance measures that rely on knowledge of the true parameters like the bias of an esti-
mator [3,4]. However, the specifications of the DGP and the OGMmight be oversimplified
and therefore unrealistic as the specification of complicated DGPs and OGMs is often hard in
practice, especially for large numbers of variables. For example, the specification of a complex
correlation structure becomes tedious for large numbers of variables [5].

Plasmode simulations [6] are often claimed as a solution to the problem of unrealistic
assumptions made in parametric simulations. For statistical Plasmode simulation, the covari-
ate data is generated by resampling from a real-world dataset that is drawn from the true DGP
of interest. Therefore, no explicit DGP specification is needed. Moreover, the resampling from
the real-world dataset is expected to accurately reflect the true DGP, assuming that the dataset
is representative and possibly additional assumptions on the resampling scheme [5]. As for
parametric simulation, the target observations are generated using an OGM specified by the
researchers. Therefore, some truth is still known in the data generation and all performance
measures, such as the bias, that need knowledge of parameters in the OGM can still be calcu-
lated. Thus, Plasmode simulation seems like a good alternative to parametric simulation for
investigating complex DGPs while still being able to evaluate the performance of statistical
methods of interest [5].

However, [5] noted that this often-made claim of Plasmode simulation producing more
realistic data is not well supported by any empirical results. Moreover, they point out potential
pitfalls when conducting Plasmode simulation studies. For example, they mention the impor-
tance of choosing an appropriate dataset to resample from, the difÏculties of small sample
sizes for resampling, and the choice of the resampling strategy itself. In addition, they high-
light the importance of the choice of an appropriate OGM and question, for example, the
practice of nullifying existing associations between covariates and the target variable. There-
fore, a comparison of parametric and Plasmode simulation is required to find out in which
situations Plasmode simulation is actually preferable.
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As a first step to close this gap, [7] empirically compared parametric and Plasmode sim-
ulations for the example of estimating the mean squared error of the least squares estimator
in linear regression. They found that, as expected, parametric simulation performs best if the
DGP and OGM are specified correctly, but it quickly gets worse when some aspects of the
DGP or OGM are misspecified. The performance of the Plasmode simulation also deterio-
rated in case of misspecifications of the OGM. Moreover, the performance of the simulations,
especially for Plasmode, got worse when increasing the number of variables or decreasing the
number of observations in the generated datasets. Regarding the resampling step in Plasmode
simulations, often subsampling with low resampling proportions outperformed the other
options in the comparison, but this required a larger dataset to resample from. However, that
study was limited to only one specific example case of a method evaluation study.

Here, we want to expand on this by comparing parametric and Plasmode simulation in
the context of method comparison studies, using the example of comparing multiple binary
classification methods. The comparison of multiple methods is more complex as not only
the performance of each method but also their ranking with respect to the performance is of
interest. We focus on the case where researchers designing a simulation study have a certain
type of data or a certain application in mind as in this case, Plasmode is a reasonable alterna-
tive to parametric simulation. Therefore, we assume there is some true but typically unknown
data-generating mechanism that researchers try to mimic through their simulation. Here, we
compare how well the true classification performance and method ranking can be recovered
for parametric simulation studies and for Plasmode simulation studies with different resam-
pling strategies. Under the true scenario, it is expected that parametric simulation performs
best. However, the truth is typically unknown to researchers conducting simulation studies
and instead, they have to make assumptions trying to approximate this truth. These assump-
tions are likely to deviate from the truth. Therefore, we analyze how performance estimation
and method ranking are affected by misspecifications of the DGP (for parametric compar-
ison studies) and of the OGM (for parametric and Plasmode comparison studies). In com-
parison to the previous study, we use a higher-dimensional setup and additional deviations.
Note that we do not aim to perform a neutral comparison study of classification methods but
to compare how well such a study would perform using different simulation approaches and
assumptions within the comparison study.

The remaining article is structured as follows. In the Simulation setup section, the setup
of the simulation study is explained. In the Results section, the results for the comparison
of parametric and Plasmode, and the influence of misspecifications of the DGP and OGM
are described. First, results regarding the estimation of the classification performance mea-
sures are shown. Then, results regarding the method ranking are presented. Last, an overall
comparison based on the proportion of acceptable simulation results is performed. Precisely,
this is the proportion of simulation results whose relative errors in estimating the classifica-
tion performance fall into the 2.5% to 97.5%-quantile interval of the relative errors for para-
metric simulation using the true DGP and OGM. In the Discussion section, the results are
summarized and discussed.

Simulation setup
In the following, we describe the simulation setup following the ADEMP (Aims, Data-
generating mechanism, Estimands, Methods, Performance measures) structure [3]. The over-
all procedure for the simulation is visualized in Fig 1.
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Fig 1. Schematic process of the simulation study.

https://doi.org/10.1371/journal.pone.0322887.g001

Aims
The aims of our simulation study are:

1. Compare how well parametric and Plasmode simulation can estimate the performance
and method ranking for several classification methods.

2. Find out how deviations from the true DGP and OGM affect parametric simulation in
terms of estimating the performance and ranking classification methods.

3. Find out how deviations from the true OGM and different resampling strategies affect
Plasmode simulation in terms of estimating the performance and ranking of classifica-
tion methods.

4. Find out how the dimension of the datasets, i.e. the number of covariates, affects 1. to 3.
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Note that the study does not aim to perform a neutral method comparison of classifica-
tion methods. Instead, it is of interest how well such a method comparison study can recover
the true method performances under certain simulation approaches and possibly misspecified
assumptions in the comparison study.

Data-generating mechanism
Since we want to compare how well comparison studies can recover the true method perfor-
mances, we first have to define a DGP and OGM that are considered the truth for our study.
Additionally, we have to specify the assumptions on the DGP and OGM within the compar-
ison study. These do not have to coincide with the truth as the truth is typically unknown to
the researchers performing such comparison studies. However, the assumptions on the DGP
and OGMmade within the comparison studies are chosen fairly close to the truth based on
the assumption that researchers conducting the study would try to mimic the truth as well as
possible.

True scenarios. The true scenarios consist of a true data-generating process (DGP) and a
true outcome-generating model (OGM). We must have full knowledge of both. At the same
time, in practice, the true DGP and OGM are typically complicated, which we try to reflect
here as well. We fix the sample sizes for all generated datasets at n = 100. For larger n the clas-
sification problem becomes easier. For smaller n the training datasets become very small. The
number of variables for each sample is varied as p = 2, 10, 50, 150. This means that we have one
true scenario for each p. However, we try to keep the true scenarios for different ps as com-
parable as possible. Larger values of p quickly result in infeasibly long runtimes of the clas-
sification models. Smaller n leads to deficient true classification performances of the classi-
fiers, which makes the comparison of different simulation strategies pointless. In this case,
often the model is random guessing under the true scenario, and the model in the compari-
son study is also random guessing. Consequently, the simulated performances are close to the
classification performances under the true scenario by chance.

True DGPs.We specify the distribution of 150 variables. For the other values of p, sub-
sets of the marginal distributions will be chosen as described below and the correlation
matrix is reduced to the corresponding entries. This ensures that the DGPs for different p are
comparable.

Here, for the true DGP, the marginal distributions and the correlation structure of the 150
variables have to be specified. For the marginal distributions, different distribution families
are chosen including normal distribution, log-normal distribution representing a skewed dis-
tribution, Gaussian mixture distributions representing bimodal distributions, and a contam-
ination model for outliers, respectively. Table 1 gives an overview of the numbers of variables
per distribution class for each value of p.

For p = 150, for normal distributions, we generate 50 variables for which the means and
variances are randomly sampled such that the expected parameter for the mean is zero and

Table 1. Number of variables generated from each distribution class per number of variables p.
p Normal Log-normal Bimodal Outlier
150 50 50 25 25
50 15 15 10 10
10 3 3 2 2
2 1 0 1 0

https://doi.org/10.1371/journal.pone.0322887.t001
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the expected parameter for the variance is one (see Section A of S1 Appendix). For log-
normal distributions, 50 variables are generated and the parameters 𝜇 and 𝜎 are randomly
sampled in the same way as for the normal variables. For Gaussian mixture distributions,
also 50 variables are generated. Half of these are generated from bimodal distributions and
the other half is generated from a contamination model. The parameters are sampled as fol-
lows. For the first component of these variables, parameters are drawn such that on average
standard normal parameters are achieved. For the bimodal distributions, the second com-
ponent has an expected 𝜇 of 4. For the outlier distributions, the second component has an
expected variance of 10. For details see Section A of S1 Appendix. The distribution of the first
few variables of each type is visualized in Fig A.2 in Section A of S1 Appendix. Drawing the
parameters produces more diverse marginal distributions than specifying the values by hand.

The correlation matrix is also generated randomly. Fig A.3 in Section A of S1 Appendix
shows the distribution of pairwise correlations. For details on the random generation, see
Section A of S1 Appendix. All marginal distributions with generated parameters can be found
in S3 Appendix. The full correlation matrix is given in S4 Appendix.

The parameters for all distributions and the correlations are drawn only once and set as the
true parameters for these true distributions for the whole simulation.

For p = 50, we select the first 15 of the normal distributions, the first 15 of the log-normal
distributions, and the first 10 for each of the bimodal and outlier Gaussian mixture distribu-
tions and the corresponding entries from the true correlation matrix.

For p = 10, we select the first three of the normal distributions, the first three of the log-
normal distributions, and the first two for each of the bimodal and outlier Gaussian mixture
distributions and the corresponding entries from the true correlation matrix.

For p = 2, we select the first of the normal distributions, the first of the bimodal Gaussian
mixture distributions, and the corresponding entries from the true correlation matrix.

Note that in these cases we are not selecting parts from the same dataset with p = 150 vari-
ables but instead, we are drawing data from the respective subsets of the 150 distributions.

Since it helps with constructing the deviation scenarios, we rescale all variables in the
generated datasets from the true DGP to [0,1] using a min-max transformation

xi,rescaled =
xi – xmin

xmax – xmin
,

where xi denotes the ith observation of variable x and xmin and xmax denote the minimum and
maximum of x, respectively.

True OGMs.We use a logistic model as true OGM since it allows us to control the true
separation of the two classes most efÏciently. Note that this choice can give an unfair advan-
tage to linear classification methods like Ridge and LASSO logistic regression. Since we are
not inherently interested in the method comparison of the classification methods but in how
well the simulation studies reconstruct the true comparison, we can give up the fairness in
comparing classification methods to some extent. It might even be advantageous here to have
a slightly unfair classification method comparison since then the differences between the clas-
sifiers are expected to be more distinct and therefore the method order is clearer and easier
to reconstruct in the simulations. If the true order is ambiguous since all methods perform
equally well, it is expected that the simulation studies cannot reconstruct this order well. For
a discussion of an alternative approach and its disadvantages that made us not consider it and
instead led to our choice, see Section B in S1 Appendix.
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The coefÏcients for the logistic model for p = 150 are chosen as follows. The 100 coefÏ-
cients for the normal, log-normal, and outlier variables are drawn at random either from a
U(–8, –3) or from a U(3, 8) distribution. The remaining 50 coefÏcients for the bimodal vari-
ables are drawn at random either from a U(–15, –10) or from a U(10, 15) distribution. The
choice of larger absolute coefÏcients for the bimodal distributions ensures a clear separation
of the data into the two classes that is necessary to achieve reasonable performances of the
classification methods for larger p. The intercept is set to adjust the predicted probabilities
such that the target variable is nearly balanced. Own analyses showed that extreme unbal-
ance results in many generated datasets with either no generated zero responses or no gener-
ated responses of one, which makes the classification unnecessary. Note that the coefÏcients
are seemingly very large but the data is rescaled to [0,1] before applying the OGM.Therefore,
odds ratios (OR) for a variable increase of 0.1 are more realistic than the typical increase of 1.
The ORs for an increase of 0.1 and the positive coefÏcients of normal, log-normal, and out-
lier variables are between 1.35 and 2.23, and for the coefÏcients of bimodal variables between
2.72 and 4.48. The resulting distribution of predicted probabilities (Fig D.1 in Section D of S1
Appendix) shows a clear separation between the two classes and is approximately symmet-
ric, resulting in an approximately balanced binary target variable. The exact coefÏcients can
be retrieved from the R code available on Zenodo (https://doi.org/10.5281/zenodo.13707473).
Fig C.1 in Section C of S1 Appendix shows the distribution of coefÏcients.

For p < 150, the coefÏcients corresponding to the respective variables chosen from the true
DGP are used and modified slightly if necessary to achieve good separation. For details see
Section D of S1 Appendix.

As with the true DGP, the coefÏcients for p = 150 are drawn exactly once in the beginning
and then kept constant during the whole simulation process.

The ith target observation for a given simulated covariate dataset is generated by drawing
from a Bernoulli distribution with the success probability set to the probability predicted by
the true OGM as

𝜋̂i =
1

1 + exp(–xTi 𝛽) ,
where xTi is the ith row of the simulated dataset supplemented by a leading one for the inter-
cept, i = 1,… , 100, and 𝛽 is the coefÏcient vector generated as described above.

Note that the true OGMs are constructed such that each feature influences the outcome.
Deviations. In the following, it is described how the DGP and the OGM are misspecified

within the comparison studies. In addition to the misspecifications described below, the true
DGP and OGM are always used once for a parametric and for a Plasmode comparison study,
respectively. Table 2 gives an overview of all applied misspecifications.

Misspecifications of the DGP. The DGP in parametric simulations can be misspecified
by changing some characteristics of the distribution. Shift, scale, correlation, and the whole
distribution are misspecified as follows one at a time. The concrete parameter values are given
in Table 2. Note that the generated data from the true DGP is first rescaled to [0,1] and then
for shift the value of 𝛿 is added to all observations and for scale the data is multiplied by s.

The parameter settings were chosen as follows. As all data is scaled to [0,1], a shift of ±0.5
is already extreme. Too extreme values of the shift might result in the generation of extremely
imbalanced classes which in the extreme case makes the application of the classification mod-
els or the performance estimation impossible. Therefore, the extreme shift values were con-
sidered together with less extreme values. For scale, the most extreme values of s = 0.25 and
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Table 2. Misspecifications of the DGP in parametric and of the OGM in parametric and Plasmode
simulation.
Type of misspecification Values
DGP Shift 𝛿 ∈ {–0.5, –0.25, –0.125, 0.125, 0.25, 0.5}

Scale s∈ {0.25, 0.5, 0.75, 1.33, 2, 4}
Correlation 𝜌 ∈ {–0.2, –0.1, 0, 0.1, 0.2}
Distribution N(0, I)

OGM Scaled c∈ {0.5, 2, 0}
https://doi.org/10.1371/journal.pone.0322887.t002

s = 4 were chosen such that still reasonable proportions of zeroes and ones are generated. As
especially s = 0.25 turned out as too extreme in certain scenarios, the less extreme values of
3/4 and 4/3 were added. For misspecifying the correlation, all pairwise correlations are fixed
as 𝜌. Larger absolute correlations are infeasible for many pairs of marginal distributions, see
the discussion in Section A of S1 Appendix.

Lastly, the distribution is completely misspecified as standard normal. This case is included
because researchers with no prior knowledge about the true DGP often use standard normal
data in their comparison study by default.

Misspecification of the OGM. A very general approach to modify classification models
applicable to all models that output predicted probabilities is described in [8]. The predicted
probabilities 𝜋̂ of the model are transformed into log-odds log(𝜋̂/(1– 𝜋̂)). These log-odds are
multiplied by a constant c to get stronger or weaker associations. The new log-odds are then
transformed back to the probability scale

𝜋̂new =
1

1 + exp(c ⋅ log(𝜋̂/(1 – 𝜋̂))) .
These new probabilities are used to generate observations of the target variable. We adopt

this approach here with a factor of

c∈ {0.5, 2}
to get models with weaker and stronger associations, respectively. Values of |c|> 1 correspond
to stronger associations and lead to better-separated classes while values of |c|< 1 lead to
weaker associations and less separated classes in the simulated responses. For the special case
of the logistic model as the true OGM, this is equivalent to multiplying each coefÏcient by c.
Note that for c < 0 it holds:

c log( 𝜋̂
1 – 𝜋̂) = log(( 𝜋̂

1 – 𝜋̂)c) = log((1 – 𝜋̂𝜋̂ )|c|) = |c| log(1 – 𝜋̂𝜋̂ ) .
Therefore, using negative factors is equivalent to changing the roles of zeroes and ones

and using the absolute value of the factor. Changing the roles of zeroes and ones does not
affect the classification performance measured by accuracy, AUC, and the Brier score but
changes the roles of sensitivity and specificity (see Section on performance measures). For
the F1-score, it is unclear how the performance changes. As it is clear how the use of nega-
tive factors affects most of the performance measures used, only positive values are used. In
addition, we use a logistic model with constant coefÏcients of 0, i.e. no effect of the covari-
ates on the response, as this might be done in many simulations to illustrate a null situation.
This is included as [5] pointed out that nullifying true existing effects is potentially problem-
atic. Overall we misspecify the OGM once by scaling by 0.5 to achieve weaker associations,
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once by scaling by 2 to achieve stronger associations, and once by setting all coefÏcients to 0
as discussed above.

Targets
The targets of the study are the classification performance on the simulated data and perfor-
mance rankings for comparing classification methods obtained by parametric and Plasmode
simulation.

Methods
In the following, parametric and Plasmode simulation and the classification methods for the
method comparison studies are briefly explained.

Parametric simulation. Parametric simulation refers to simulations where the whole
data consists of pseudo-random numbers drawn from a data-generating process (DGP) and
an outcome-generating model (OGM) specified by the researcher. Therefore, both the DGP
and OGM are fully known. The choice of these can be hard in practice. Researchers might
try to set up their parametric simulation to be as close as possible to certain data of inter-
est. Alternatively, researchers might want to cover as many situations as possible including
extreme scenarios. The first case is the one where Plasmode simulations might be a reasonable
alternative. In the latter case, parametric simulation would be the obvious choice as it allows
specification of all aspects of the DGP and OGM.Therefore, we focus on the first case here.
When the DGP and OGM are specified, a large number of covariate datasets can be gener-
ated using a pseudo-random number generator to draw observations from the DGP. Then,
the OGM is applied to this generated covariate data to generate corresponding observations of
the target variable. This process mimics repeatedly drawing samples from a large population
with the specified DGP and OGM. For method comparison, the methods are then applied to
the generated datasets, and their performance is evaluated with regard to performance met-
rics of interest. Since all aspects of the true DGP and OGM are known, performance met-
rics depending on these (e.g. bias) can be assessed. The results can help to understand how
the methods perform for datasets similar to the chosen DGPs and OGMs and which method
to prefer in which situations. This is of great use for an adequate method choice in practice
[1,4]. For more details on how to design, perform, analyze, and report parametric simulation
studies, refer to [3]. For method comparison studies, see also [1].

Here, we perform the parametric simulation studies as follows. In each of the 100 iterations
for a scenario consisting of a combination of p, the choice of the DGP, and the choice of the
OGM, we draw 100 observations from the chosen DGP. Then, the chosen OGM is applied
to this generated covariate data to generate observations of the binary target variable. Subse-
quently, all classification methods are applied using 5-fold nested cross-validation for hyper-
parameter tuning and performance estimation. Last, the methods are ranked according to
their performance with regard to each performance measure.

Plasmode simulation. Themain difference between Plasmode simulation and paramet-
ric simulation is the generation of the covariate datasets. In Plasmode simulation studies,
instead of specifying the DGP like in the parametric case, data is resampled from a real-life
dataset from the true DGP of interest. Therefore, no explicit assumptions on the DGP are
made. However, it is required to have a representative real-life dataset from the true DGP at
hand. The OGM is then applied to the resampled covariate datasets and the method compar-
ison is performed analogously to the parametric simulation. Plasmode can be seen as a semi-
parametric approach as it combines the resampling from a real-life dataset in non-parametric
simulation with the use of a specified OGM in parametric simulation. This has the advantage
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that some control over the data generation is given and some aspect of the truth within the
simulation is known while at the same time, the problem of unrealistic specifications of the
DGP in parametric simulation is avoided [5]. When using only real data, certain quantities
depending on unknown parameters (e.g. bias) cannot be assessed [4]. For a more detailed dis-
cussion of the advantages and disadvantages of Plasmode simulations as well as guidance on
how to perform them refer to [5].

There are multiple options for the resampling step. Here we use all resampling techniques
that are commonly used according to [5]:

• m out of n Bootstrap [9–12] with resampling proportions 0.632 and 1, i.e. drawing with
replacementm ≤ n observations of the original dataset.

• Subsampling with resampling proportions 0.632 and 1, i.e. drawing without replacement
m < n observations of the original dataset or using the whole dataset.

These values for the resampling proportions were chosen for comparability with the pre-
vious study [7] where the values of 0.632 and 1 were used as they were identified as relevant
special cases from the literature. Additionally, smaller resampling proportions like 0.1 were
previously used and showed good performance. Here, nested 5-fold cross-validation will be
applied to the datasets later on (see Subsection Performance measures). For n = 100, the train-
ing datasets have size 100 ⋅4/5 ⋅4/5 = 64 in the inner cross-validation loop. If we apply subsam-
pling or Bootstrapping this number of training datapoints reduces accordingly. For a resam-
pling proportion of 0.632, there are about 40 training points left which is already few. There-
fore no smaller resampling proportions are used. Another solution would be to increase the
number of folds in the cross-validation, but the runtime increases roughly quadratically in the
number of folds. Therefore, the number of folds is kept low and the resampling proportions
higher.

For each specific scenario, consisting of the number of variables p, a chosen resampling
strategy, and a chosen OGM, a dataset of size 100 is generated from the true DGP. This
dataset is then used to resample from it, for the 100 iterations of the Plasmode simulation.
After resampling from this dataset from the true DGP, the next steps are the same as for the
parametric simulation, applying the OGM and analyzing the generated data.

Classification methods. Within our parametric or Plasmode method comparison studies,
we compare several methods for binary classification including

• Ridge logistic regression [13],
• LASSO logistic regression [14],
• Support vector machine (SVM) [15],
• k-nearest neighbors (KNN) [16,17], and
• random forest (RF) [18].

As we are not primarily interested in the method comparison itself we do not include
boosting or neural nets due to their high runtimes and sensitivity to tuning. We concentrate
on commonly used classification methods for the low to high-dimensional regime that we
investigate here. For even higher-dimensional data, specialized classification methods might
be needed [19,20]. We use 5-fold nested, stratified cross-validation (see Subsection ) and ran-
dom search with a budget of 100 evaluations for hyperparameter tuning of each method.
We tune with respect to classification accuracy. The low budget is chosen as we are not pri-
marily interested in the method comparison itself and runtime is an issue in this study. The
hyperparameter spaces are chosen as suggested in [21].
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Performance measures
For judging the performance of a binary classification method, typically its predicted out-
come values are compared to the true outcome values. These can be summarized in a confu-
sion matrix counting the numbers of observations for all possible combinations of true and
predicted outcomes (see Table 3).

For the method comparison within each simulated simulation study,

• Accuracy = TN+TP
N ,

• F1-Score = 2TP
2TP+FP+FN ,

• Sensitivity = TP
TP+FN ,

• Specificity = TN
FP+TN

• AUC (Area under the Receiver Operating Curve that is the diagram of Sensitivity against
1–Specificity for different cutoff values for the predicted probabilities corresponding to a
prediction of a 1), and

• Brier score = 1
N ∑N

i=1(𝜋̂i – yi)2, where 𝜋̂i is the predicted probability for a 1 for the ith obser-
vation and yi ∈ {0, 1} the corresponding true outcome value,

are used to judge the performance of the classification methods. Subsequently, the methods
are ranked according to each measure. All measures return values in [0,1]. For all except the
Brier score, high values indicate good performance. For the Brier score, low values indicate
good performance [22,23]. 5-fold nested cross-validation [24] is applied for performance esti-
mation and hyperparameter tuning. Note that the performance measures are chosen because
they are commonly used performance measures for binary classification methods rather than
recommendations. For instance, only the Brier score is a proper measure, AUC is semi-proper
and all other measures are improper measures.

We calculate performance measures, based on scoring rules to assess the quality of prob-
abilistic predictions by assigning a numerical score to compare predictions and the occur-
ring event. A scoring rule is proper if the best predictor is the true probability of the event.
A strictly proper scoring rule such as the Brier score guarantees that the best value is only
achieved when we get as close as possible to the true probability. A semi-proper measure not
only does not guarantee that the best performance is achieved by a predictor whose predic-
tions are closest to the true probabilities, but it is also possible to improve the values of the
measure by moving the predicted probabilities away from their true values. An improper
scoring rule, such as ’Accuracy’, does not predict probabilities as close as possible to the true
probabilities [25].

If a method fails and an error is thrown, a fallback learner that always predicts the major-
ity class is used instead to calculate the performance. Using a fallback learner is recommended
over excluding the iterations with method failure or penalizing method failure by imputing
the worst possible score [26].

Table 3. Confusion matrix for binary classification methods. y, true outcome; ŷ, predicted outcome; TN, number
of true negatives; FN, number of false negatives; FP, number of false positives; TP, number of true positives; N,
the number of observations.

y = 0 y = 1 ∑̂y = 0 TN FN TN + FN̂y = 1 FP TP FP + TP∑ TN + FP FN + TP N

https://doi.org/10.1371/journal.pone.0322887.t003

PLOS One https://doi.org/10.1371/journal.pone.0322887 June 2, 2025 11/ 36

https://doi.org/10.1371/journal.pone.0322887.t003
https://doi.org/10.1371/journal.pone.0322887


ID: pone.0322887 — 2025/5/30 — page 12 — #12

PLOS One Simulation study to evaluate when Plasmode simulation is superior to parametric simulation

For the parametric and Plasmode simulation, 100 datasets are generated per scenario on
which the method comparison is performed. This number is mainly motivated by runtime. If
only ones or only zeros are generated in an iteration, the whole data including the covariates
is redrawn up to 50 times. It might still happen that during cross-validation some of the folds
have only ones or only zeroes as response values. Then, the sensitivity or specificity cannot be
calculated and consequently also the AUC cannot be calculated for this fold. In this case, the
values of the measure in the remaining folds are averaged and the fold with only ones or only
zeroes as response values is left out (for the affected measures only). In the case of sensitivity
and specificity, this procedure gives similar results to calculating the measure on all predicted
responses across the folds as the proportions of ones and zeroes are similar in all folds since
we use stratified cross-validation. For the AUC, the results when first pooling the predictions
over the folds could differ notably if the classifiers in the different folds are calibrated differ-
ently. Therefore, pooling would not be a good idea and we choose the approach of averaging
over the remaining folds. If there are no true or predicted ones for a certain fold, the F1-score
cannot be calculated. In case of no true ones, the same approach as for sensitivity and AUC is
chosen. In case of no predicted ones, a value of zero is assigned as the F1-score for that fold
which corresponds to the worst possible value. If there are ones, but the classifier does not
predict any, then its performance regarding predicting ones is as bad as possible.

To judge the performance of the simulation studies themselves we calculated the differ-
ences between the estimated performance values and their true values for each measure. The
true performances and rankings are approximated using datasets drawn from the true DGP
and responses generated by the true OGM and benchmarking all five classification methods
with regard to all performance measures on these simulated datasets, as described before. This
is done 500 times for the true model for each value of p. The mean performance of each clas-
sification method is calculated as its true performance for each measure. The method rank-
ing based on these mean performances is used as the true ranking. Ranks are always assigned
such that lower ranks indicate better performance regardless of whether high or low values of
the corresponding performance measure indicate good performance. Moreover, the Kendall
distance [27] of the simulated and the true ranking according to each measure is calculated. It
is a standard metric for comparing permutations [28]. The Kendall distance is defined as the
number of swaps of neighboring values required to transform the simulated ranking into the
true one. Kendall distance values are normalized to [0,1] where 0 corresponds to equal rank-
ings (best possible value) and 1 corresponds to reversed rankings (worst possible value). Ties
in the method rankings are broken at random as average ranks are not permitted for the cal-
culation of Kendall distance. Since the true ranks are in {1, 2, 3, 4, 5} for example the ranking
1, 2.5, 4, 2.5, 5 cannot be transformed to the true ranks via permuting adjacent numbers in
the ranking. Ideally, the estimated method ranking should be similar to the true ranking as
method rankings established by simulation studies should be used as guidance for choosing a
suitable method in practice [1]. Therefore, a wrong method ranking in a simulation study can
result in non-optimal method choices in practice.

Even if the classification performance measure values for the classifiers are estimated pre-
cisely, still the method ranking might differ from the true ranking as often already small dif-
ferences in the classification performance can change the rank of a method. Conversely, the
estimation of the method ranking can still be good if all estimates of the classification perfor-
mance measures are biased in the same direction and by roughly the same amount. A good
simulation study should recover the true method ranking without under- or overestimating
the true classification performances. Therefore, both the errors in estimating the classification
performance as well as the Kendall distances of the method rankings are taken into account.

PLOS One https://doi.org/10.1371/journal.pone.0322887 June 2, 2025 12/ 36

https://doi.org/10.1371/journal.pone.0322887


ID: pone.0322887 — 2025/5/30 — page 13 — #13

PLOS One Simulation study to evaluate when Plasmode simulation is superior to parametric simulation

To summarize the results of the comparison studies, the proportions of acceptable simula-
tion results are calculated as follows. First, relative errors of one minus the respective measure
with respect to one minus the true measure are calculated for each iteration as

Relative Errori =
(1 – M̂i) – (1 –M)

1 –M
,

whereM denotes the true measure value and M̂i the simulated measure value in the ith iter-
ation. This weighs errors for high true performance values higher than for moderate perfor-
mance which is how we would judge the performance intuitively. For the Brier score, where
low values correspond to good performance, the usual relative errors

Relative ErrorBrier Score,i =
Simulated Brier Scorei – True Brier Score

True Brier Score
,

are calculated. Then, the proportion of “acceptable” simulation results is calculated per sim-
ulation type, measure, classifier, and scenario. For a simulation result to be called accept-
able, here, its relative error must lie within the 2.5% and 97.5% quantile interval of the rela-
tive errors for the parametric simulation for the true scenario for the corresponding measure,
classifier, and p. Therefore, for the true scenario and parametric simulation, the proportion
of acceptable iterations is 95% by design. The relative errors for the parametric simulation
for the true scenario for a measure and classifier can be seen as the best results possible in a
comparison study. The proportions are compared across the other simulation types and sce-
narios for each classifier, measure, and number of variables p. High proportions of acceptable
estimates mean that comparison studies with the respective assumptions will perform com-
parably well as comparison studies under the true scenario which yield the best result we can
achieve.

Software
The true DGP was set up in julia 1.10.2 [29] using the packages Bigsimr.jl
[30] and Distributions.jl [31,32]. All other calculations were performed using R
4.3.3 [33]. For data generation, the R package bigsimr [34] was used which is built
on the Bigsimr.jl-package. For benchmarking the classifiers, the R package mlr3
0.18.0 [35] together with mlr3measures [36] was used. This uses the LASSO and Ridge
implementation from glmnet [37], the SVM implementation of e1071 [38], the KNN
implementation of kknn [39] and the random forest implementation of ranger [40].
Rankcluster [41] is used to calculate the Kendall distances. For visualization, ggplot2
3.5.0, ggh4x and ggmosaic [42–44] are used. The simulations were conducted on
the local compute cluster of the Department of Statistics at TU Dortmund University. The
batchtools 0.9.17 package [45] was used for distributed computing.

The full code and simulation results for the simulation study are available on Zenodo
(https://doi.org/10.5281/zenodo.13707473).

Results
In the following, the results are presented. First, the true values for the performance measures
are presented. Then, the errors of the comparison studies in estimating the performance of
the classifiers are discussed. Afterward, the errors of the comparison studies in estimating the
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method ranking are presented. Finally, the results are summarized by analyzing the propor-
tion of acceptable estimates. This analysis of the proportion of acceptable estimates summa-
rizes the results regarding the errors of the comparison studies in estimating the performance
of the classifiers concisely and can be understood without the more detailed discussion of the
results before.

True performances and method rankings
In Tables 4 to 7, the true performance measures and rankings for the classifiers are presented
for each value of p = 2, 10, 50, 150. For low p, all classifiers achieve high performance accord-
ing to all measures. For the highest p = 150, the performance decreased to moderate perfor-
mance measure values. In general, the differences between the methods are not large. The
ranks are obtained based on the true performance measure values such that rank one always
corresponds to the best performance regarding the respective measure.

For p = 2, LASSO performs best with regard to many performance measures, followed by
SVM, Ridge, KNN, and RF. For p = 10, the method order is Ridge, LASSO, SVM, KNN, and
RF except for the Brier score for which SVM and Ridge are swapped and for the sensitivity,
for which LASSO, KNN, Ridge, and SVM are swapped. For p = 50, Ridge and SVM are per-
forming best, followed by LASSO, RF, and KNN. For p = 150, SVM performs best with respect
to all measures, and LASSO performs worst according to all except for the Brier score. The
remaining ranking differs more between the performance measures.

Method failure
Within the comparison studies, fitting the classification methods to the simulated data may
fail, which typically results in a warning message in case of non-convergence or in an error
message in case no fit could be obtained at all. For Ridge and LASSO, non-convergence is an
issue. Moreover, both models can not be fit if the data does not contain observations of both
classes. In that case, SVM also outputs an error message. The random forest is still fit but out-
puts a warning message. KNN did not encounter any errors or warnings. In case of an error
message, the fallback learner that always predicts the majority class is used. The numbers of
iterations out of the total 100 iterations in which any warning or error message per scenario
and classifier are given in Table A.1 to Table A.7 in Section A of S2 Appendix. Note that not
necessarily all folds are affected.

Table 4. True values for performance measures for the five classifiers averaged over 500 runs under the true
scenario for p = 2 and n = 100.

Ridge LASSO SVM KNN Random
Forest

True Accuracy 0.9421 0.9512 0.9431 0.9345 0.9231
True AUC 0.9910 0.9924 0.9854 0.9726 0.9804
True Brier score 0.0625 0.0397 0.0446 0.0503 0.0594
True F1-score 0.9243 0.9383 0.9280 0.9179 0.9032
True Sensitivity 0.9048 0.9326 0.9245 0.9184 0.9033
True Specificity 0.9652 0.9627 0.9539 0.9432 0.9330
True Rank Accuracy 3 1 2 4 5
True Rank AUC 2 1 3 5 4
True Rank Brier score 5 1 2 3 4
True Rank F1-score 3 1 2 4 5
True Rank Sensitivity 4 1 2 3 5
True Rank Specificity 1 2 3 4 5

https://doi.org/10.1371/journal.pone.0322887.t004

PLOS One https://doi.org/10.1371/journal.pone.0322887 June 2, 2025 14/ 36

https://doi.org/10.1371/journal.pone.0322887.t004
https://doi.org/10.1371/journal.pone.0322887


ID: pone.0322887 — 2025/5/30 — page 15 — #15

PLOS One Simulation study to evaluate when Plasmode simulation is superior to parametric simulation

Table 5. True values for performance measures for the five classifiers averaged over 500 runs under the true
scenario for p = 10 and n = 100.

Ridge LASSO SVM KNN Random
Forest

True Accuracy 0.8982 0.8885 0.8832 0.8588 0.8565
True AUC 0.9628 0.9533 0.9510 0.9300 0.9286
True Brier score 0.0909 0.0897 0.0861 0.1134 0.1165
True F1-score 0.8693 0.8642 0.8565 0.8355 0.8112
True Sensitivity 0.8641 0.8776 0.8624 0.8694 0.7920
True Specificity 0.9136 0.8913 0.8944 0.8433 0.8934
True Rank Accuracy 1 2 3 4 5
True Rank AUC 1 2 3 4 5
True Rank Brier score 3 2 1 4 5
True Rank F1-score 1 2 3 4 5
True Rank Sensitivity 3 1 4 2 5
True Rank Specificity 1 4 2 5 3

https://doi.org/10.1371/journal.pone.0322887.t005

Table 6. True values for performance measures for the five classifiers averaged over 500 runs under the true
scenario for p = 50 and n = 100.

Ridge LASSO SVM KNN Random
Forest

True Accuracy 0.7968 0.7391 0.7944 0.7099 0.7213
True AUC 0.8889 0.7954 0.8698 0.7624 0.7888
True Brier score 0.1489 0.1756 0.1418 0.2025 0.1938
True F1-score 0.6744 0.5858 0.7271 0.5822 0.5719
True Sensitivity 0.6408 0.5610 0.7161 0.5626 0.5334
True Specificity 0.8636 0.8190 0.8283 0.7692 0.8066
True Rank Accuracy 1 3 2 5 4
True Rank AUC 1 3 2 5 4
True Rank Brier score 2 3 1 5 4
True Rank F1-score 2 3 1 4 5
True Rank Sensitivity 2 4 1 3 5
True Rank Specificity 1 3 2 5 4

https://doi.org/10.1371/journal.pone.0322887.t006

Table 7. True values for performance measures for the five classifiers averaged over 500 runs under the true
scenario for p = 150 and n = 100.

Ridge LASSO SVM KNN Random
Forest

True Accuracy 0.6628 0.6323 0.7103 0.6327 0.6617
True AUC 0.7378 0.6263 0.7676 0.6552 0.7072
True Brier score 0.2181 0.2237 0.1914 0.2439 0.2169
True F1-score 0.4809 0.4454 0.6467 0.5175 0.5588
True Sensitivity 0.5061 0.4813 0.6448 0.5031 0.5562
True Specificity 0.6839 0.6602 0.7167 0.6788 0.6755
True Rank Accuracy 2 5 1 4 3
True Rank AUC 2 5 1 4 3
True Rank Brier score 3 4 1 5 2
True Rank F1-score 4 5 1 3 2
True Rank Sensitivity 3 5 1 4 2
True Rank Specificity 2 5 1 3 4

https://doi.org/10.1371/journal.pone.0322887.t007

For p = 2, no error messages are encountered in any scenario. There are only a few warning
messages for Ridge and LASSO (Table A.1 in Section A of S2 Appendix). For p = 10, LASSO
encountered many warnings (some in every scenario) which might indicate convergence
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issues. Ridge also encountered many warnings in all scenarios except for correlation and shift
alternatives. For data generated from a standard normal distribution or with a scale of 0.25
or 0.5 it happened that no zeroes or no ones were generated. These are the cases where SVM
encounters an error and RF a warning (Table A.2, A.3 in Section A of S2 Appendix). For the
scale of 0.25 these are all iterations. For p = 50, it looks similar, but there are more warnings
for RF and Ridge. For the scale of 0.25 and 0.5, and for a shift of ±0.5, in almost all iterations
either no ones or no zeroes are generated (Table A.4, A.5 in Section A of S2 Appendix). For
the scale of 4, also many iterations are affected. For p = 150, again many warnings are encoun-
tered for Ridge and LASSO. For the scale of 0.25, again no zeroes or ones are generated in any
iteration. For the scale of 0.5 and for a shift of ±0.5 this happens in around one-third of the
iterations (Table A.6, A.7 in Section A of S2 Appendix).

Errors in estimation of performance measures
In the following, the performance of parametric and Plasmode simulation regarding the esti-
mation of the classification performance measures for all classifiers are compared under dif-
ferent scenarios and using different resampling types for Plasmode. First, the resampling
types for the Plasmode simulation are compared. Afterwards, the influence of different mis-
specifications of the data-generating process (DGP) and outcome-generating model (OGM)
are discussed. The results are always presented according to the number of variables p and
according to the classification performance measure. For each combination of p and each
classification performance measure, the errors for estimating this measure are visualized using
boxplots stratified by the simulation type, classifier, and potentially by the type of misspeci-
fication. This section gives a detailed discussion of the results. A summary of the results can
be found afterward in the presentation of the proportions of acceptable estimates. That section
can also be understood independently of the following detailed analysis of the results.

Comparison of resampling strategies for Plasmode. In the following, under the true
scenario, the errors in estimating the classification performances are compared between para-
metric simulation and Plasmode simulation with different resampling types. This comparison
shows how well each simulation approach can perform at best when no wrong assumptions
are made in the comparison study. The differences between the simulated accuracy and the
true accuracy are displayed in a boxplot over 100 iterations. Ideally, the errors should all be
close to zero since the assumptions in the simulations coincide with the truth. Positive values
correspond to overestimation, and negative values to underestimation. The columns in each
plot correspond to the type of simulation. The rows correspond to the classifier.

Overall, it can be seen that parametric simulation is often superior to Plasmode simulation
as the median relative errors are typically closer to zero and the boxes are narrower indicating
more stable estimation. In general, Plasmode seems to perform worse compared to paramet-
ric for increasing p. Compare for example the estimation errors for accuracy for p = 2 for the
two Bootstrap types in Fig 2 to the corresponding ones for p = 150 in Fig 3.

In many cases, some Plasmode variant performs similarly well but no variant is consis-
tently as good as parametric across all classifiers, measures, and values of p. There is no clear
structure when which Plasmode variant performs well but often 0.632-subsampling performs
worst for p = 10 (Figs B.6 to B.11 in Section B of S2 Appendix) and one of the Bootstrap types
performs worst for p = 50 (Figs B.12 to B.22 in Section B of S2 Appendix). No resampling per-
forms satisfactorily in most cases with few exceptions (e.g. for p = 150 and the F1-score, see
Fig B.20). Which of the Bootstrap types to prefer depends on the concrete situation but often
0.632-Bootstrap is preferable over the ordinary Bootstrap. For example, 0.632-Bootstrap per-
forms often well for p = 10, and often worse but still better than ordinary Bootstrap for p = 50,
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Fig 2. Errors in the estimation of accuracy in 100 iterations of a classification method comparison study per classifier for different simulation
approaches under the true scenario for p = 2.

https://doi.org/10.1371/journal.pone.0322887.g002

see Figs B.6 to B.11 and B.12 to B.17. Moreover, there is a tendency towards larger errors for
all simulation types for the F1-score, specificity, and sensitivity, especially for high p and espe-
cially for Ridge and LASSO as classifiers. A reason for this might be that we observed that
especially Ridge and LASSO tend to predict only ones or only zeroes when p gets larger and
n is kept constant.

The plots for all combinations of p and classification performance measures can be found
in Section B of S2 Appendix.

Shift. In the following, it is discussed how misspecifying the shift in the DGP affects the
ability of the parametric simulations to estimate the classification performances. For p = 2
and p = 10, almost no differences are visible between the errors for shifted data and the errors
under the true scenario (see Figs C.1 to C.12 in Section C of S2 Appendix). For p = 2, one of
the coefÏcients is positive and the other is negative with similar absolute values. Therefore, the
effects of shifting both variables by the same amount might cancel out to some extent.
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Fig 3. Errors in the estimation of accuracy in 100 iterations of a classification method comparison study per classifier for different simulation
approaches under the true scenario for p = 150.

https://doi.org/10.1371/journal.pone.0322887.g003

Fig 4 shows the errors in estimating the accuracy for p = 50 and misspecifications for shift
for the parametric simulation. Note that for shifts of ±0.5, Ridge, LASSO, and SVM failed in
almost all iterations and the fallback learner was used instead (see Table A.5 in Section A of S2
Appendix). An overestimation of the true accuracy can be observed for all shifts. The errors
for parametric simulation based on shifted data quickly get worse than the well-performing
Plasmode variants with resampling proportions of one.

For AUC and the Brier score, an inverted pattern can be observed (see Figs C.13 and C.14
in Section C of S2 Appendix). The errors for the F1-score and sensitivity estimation increase
with increasing shifts while the errors for specificity decrease with increasing shifts (see Fig 5,
and Figs C.15 to C.16 in Section C of S2 Appendix). A possible explanation for these obser-
vations is that shifting the data seems to result in higher predicted probabilities and there-
fore more generated ones for positive shifts and lower predicted probabilities and therefore
a higher proportion of zeroes. If a method then, e.g. for a positive shift, predicts mostly high
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Fig 4. Errors in the estimation of accuracy in 100 iterations of a classification method comparison study per classifier for different simulation
approaches with misspecified shift for parametric simulation for p = 50.

https://doi.org/10.1371/journal.pone.0322887.g004

probabilities it will achieve high performance with respect to accuracy, sensitivity, and F1
score as it correctly predicts the ones. On the other hand, the specificity decreases as true
zeroes are often also predicted as one. For the extreme shifts and Ridge, LASSO, and SVM this
happens since the fallback learner that always predicts the majority class is used in almost all
iterations.

The results for p = 150 are similar to those for p = 50 (see Figs C.17 to C.22 in Section C of
S2 Appendix).

Scale. Fig 6 shows the errors in the estimation of accuracy when the scale in the paramet-
ric simulation is misspecified for p = 2. The true accuracy is underestimated for scales smaller
than one and overestimated for scales larger than one.

For the AUC, the underestimation for small scales remains, but only slight differences can
be observed for scales larger than one (see Fig D.1 in Section D of S2 Appendix), possibly
because overestimation is almost impossible due to the true high AUCs. For the Brier score,
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Fig 5. Errors in the estimation of the F1 score in 100 iterations of a classification method comparison study per classifier for different simulation
approaches with misspecified shift for parametric simulation for p = 50.

https://doi.org/10.1371/journal.pone.0322887.g005

the results are similar to the ones for accuracy but with inverted signs (Fig D.2 in Section D
of S2 Appendix). The results for F1-score and sensitivity are similar to those for the AUC
(Figs D.3 and D.4 in Section D of S2 Appendix). For specificity, an increase of the errors with
increasing scale can be observed (Fig D.5 in Section D of S2 Appendix).

For p = 10, more extreme estimation errors compared to p = 2 can be observed for all mea-
sures, especially for the F1-score and sensitivity. The direction of over- and underestimation
is not always consistent with that observed for p = 2 (see Figs D.6 to D.11 in Section D of S2
Appendix). Note that for small scales, especially for the scale of 0.25, Ridge, LASSO, and SVM
failed in many up to all iterations, see Table A.3 in Section A of S2 Appendix.

For p = 50, and for a scale of 0.25, no AUCs and sensitivities could be estimated in any
iteration, i.e. no ones were generated even after redrawing the data 50 times.

The true accuracy is overestimated for all scales, while the AUC and Brier score are under-
estimated (Figs D.13 to D.15 in Section D of S2 Appendix). For the F1-score and sensitivity,
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Fig 6. Errors in the estimation of accuracy in 100 iterations of a classification method comparison study per classifier for different simulation
approaches with misspecified scale for parametric simulation for p = 2.

https://doi.org/10.1371/journal.pone.0322887.g006

severe underestimation can be observed for small scales and overestimation for large scales
(Figs D.15, D.16 in Section D of S2 Appendix). In the extreme case of small scales, the esti-
mated measure is always close to zero, and for large scales always close to one. For specificity,
the pattern observed for the F1-score and sensitivity is inverted (Fig D.17 in Section D of S2
Appendix).

The results regarding the estimation errors are very similar to those for p = 50 (see
Figs D.18 to D.23 in Section D of S2 Appendix).

Overall, we observe that misspecifying the scale in the DGP for parametric simulation
often results in errors that are larger than the errors for Plasmode simulation for which we
cannot misspecify the DGP directly.
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Correlation. In the following, the effect of changing the correlation in the DGP for para-
metric simulation is discussed. For p = 2, there are almost no differences visible when chang-
ing the correlation structure except for slight deviations for fixed pairwise correlations of 0.2
(see Figs E.1 to E.6 in Section E of S2 Appendix).

For p = 10, almost no differences are visible (see Figs E.7 to E.12 in Section E of S2
Appendix).

For p = 50, there are slight differences visible except for specificity. The true measures are
overestimated for a correlation of 0.2 and slightly underestimated for the other correlation
values (vice versa for the Brier score). For accuracy, this is shown in Fig 7. The results for all
other measures can be found in Figs E.13 to E.17 in Section E of S2 Appendix.

For p = 150, there are also slight errors in almost all cases (Figs E.18 to E.23 in Section E of
S2 Appendix).

Fig 7. Errors in the estimation of accuracy in 100 iterations of a classification method comparison study per classifier for different simulation
approaches with misspecified correlation for parametric simulation for p = 50.

https://doi.org/10.1371/journal.pone.0322887.g007
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Overall, changing the correlation does not seem to affect the simulation results for para-
metric simulation in many cases. Often the errors made by misspecifying the correlation are
still smaller than those of Plasmode simulation under the true scenario. However, it should
be noted that the misspecifications here are not very large as the true correlations are mostly
scattered around zero. Using correlations further away from the truth might lead to larger
errors for parametric simulation but could not be investigated because of numerical problems
as discussed in Section Deviations.

Complete misspecification as standard normal. For p = 2, when misspecifying the dis-
tribution as a standard normal there are some differences visible for almost all measures and
classifiers. The errors for accuracy, Brier score, and specificity are notable (Figs 8, and F.2, F.5
in Section F of S2 Appendix). For AUC, F1-score, and sensitivity only slight over- or underes-
timation occurs (Figs F.1, F.3, F.4 in Section F of S2 Appendix).

Fig 8. Errors in the estimation of accuracy in 100 iterations of a classification method comparison study per classifier for different simulation
approaches with distribution misspecified as standard normal for parametric simulation for p = 2.

https://doi.org/10.1371/journal.pone.0322887.g008
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The true accuracies and specificities are overestimated notably while the AUCs, Brier
scores, F1-scores, and sensitivities are underestimated notably (see Figs F.6 to F.11 in
Section F of S2 Appendix).

For p = 50, slight errors are observed for accuracy, AUC, and Brier score (see Figs F.12
to F.14 in Section F of S2 Appendix). For F1-score and sensitivity, underestimation can be
seen and for specificity, overestimation can be seen (see Figs F.15 to F.17 in Section F of S2
Appendix).

At least slight over- or underestimation can be observed in almost all cases for p = 150
(Figs F.18 to F.23 in Section F of S2 Appendix). For KNN, the median errors in estimating
accuracy, AUC, and Brier score are almost zero. Note that the standard normal distribu-
tion approximates the distribution of many variables in the true DGP reasonably. This might
explain why the resulting errors for parametric simulation are often not very large.

OGM. In the following, the effect of misspecifying the OGM on the results of both para-
metric and Plasmode are presented. For p = 2, an increase in the errors from underestimation
for OGMs scaled by 0.5 to (slight/very slight) overestimation for scaled by 2 and consider-
able underestimation for setting all coefÏcients to 0 can be observed for all measures except
the Brier score for parametric as well as Plasmode simulation (Fig 9 below, and Figs G.1, G.3
to G.5 in Section G of S2 Appendix). For the Brier score, the pattern is inverted (Fig G.2 in
Section G of S2 Appendix).

The results for p = 10 are similar to those for p = 2 (see Figs G.6 to G.11 in Section G of S2
Appendix).

For p = 50, the results are mostly similar to those for p = 2 and 10 (see Figs G.12 to G.17 in
Section G of S2 Appendix). In part, overestimation for sensitivity and F1-score for the model
with all coefÏcients set to zero can be seen, and the increase for 0.5 and 2 is less clear, in part
even with a decrease for 2 again.

For p = 150, results are again similar to those for p = 2, 10 but the pattern for scaled OGMs
is less consistent (see Figs 10, and G.18 to G.22 in Section G of S2 Appendix). In the para-
metric case often no difference between these models scaled by 0.5 and 2 and the true OGM
is visible. For Plasmode, typically some difference can be observed, but not necessarily an
increase (see e.g. Fig 10).

Errors in estimation of method ranking
In the following, the errors in estimating the true method ranking in the parametric or Plas-
mode comparison studies are discussed. Low ranks always correspond to good performance,
independent of the measure. The Kendall distances of the simulated and true method rank-
ings are displayed in boxplots analogously to the errors in the previous section. Fig H.1 in
Section H of S2 Appendix shows the Kendall distances for 10000 pairs of randomly drawn
rankings of 1,… , 5 for comparison. The median Kendall distance is at 0.5 and the distribu-
tion is approximately symmetric around that value. Ideally, the simulated and true method
rankings should show lower Kendall distances than these randomly drawn rankings.

When comparing the Kendall distances for p = 2, it can be seen that differences in the
Kendall distance of the simulated and true rankings occur where notable errors in estimating
the classification performance due to misspecifications of the DGP or OGM were observed
previously. For example, the Kendall distance is only slightly influenced by changing the cor-
relation as shown in Fig 11, but more heavily influenced by changing the OGM (Fig 12) or
scale (Fig 13). Interestingly, the Kendall distance sometimes gets smaller for misspecifications
than for the true scenario, see e.g. Fig 13. Also, the median Kendall distance of Plasmode sim-
ulation is often smaller than for parametric, especially for no resampling except for specificity
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Fig 9. Errors in the estimation of accuracy in 100 iterations of a classification method comparison study per classifier for different simulation
approaches with misspecifications of the OGM for p = 2.

https://doi.org/10.1371/journal.pone.0322887.g009

(see Figs H.2 to H.16 in Section H of S2 Appendix). Overall, the results are more volatile than
those for the estimation errors.

For p > 2, the results are similar to those for p= 2 but Plasmode is usually performing worse
than parametric again for increasing p under the true scenario (see Fig in Section H in S2
Appendix).

Proportion of acceptable simulation results
To summarize the above findings, the proportions of acceptable estimates are discussed next.
Therefore, the proportion of iterations with relative errors within the 2.5% to 97.5%-quantile
interval of the relative errors for the parametric comparison studies under the true scenario
are calculated, for each combination of p, simulation type, classifier, and measure for each
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Fig 10. Errors in the estimation of accuracy in 100 iterations of a classification method comparison study per classifier for different simulation
approaches with misspecifications of the OGM for p = 150.

https://doi.org/10.1371/journal.pone.0322887.g010

deviation. The resulting proportions are displayed in heatmaps for all scenarios. Each cell cor-
responds to one combination of simulation type, measure, classifier, and scenario, as indi-
cated by the facet and axis labels. Violet-colored cells indicate high proportions and thus a
good performance. Pink, red, and orange colors already indicate increasingly worse perfor-
mance, and yellow indicates that almost all iterations yielded unacceptable results.

The results for p= 2 are shown in Fig 14. It can be seen that in many cases the proportion of
acceptable iterations is high. For all simulation types, the proportion of acceptable iterations is
very low when all coefÏcients of the OGM are set to zero. Moreover, for all measures except
for the specificity, the proportion is low for a scale of 0.25. Depending on the measure and
classifier there are also moderate proportions for the higher values of scale, for setting the dis-
tribution to standard normal, and for the other modifications of the OGM. For Plasmode and
the true scenario, we also observe some moderate values, especially for the 0.632 resamplings.
No resampling performs very well here, except for the Brier score.
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Fig 11. Kendall distance of the simulated and true method ranking based on the Brier score in 100 iterations of a classification method comparison
study per classifier for different simulation approaches with misspecifications of the correlation for parametric simulation for p = 2.

https://doi.org/10.1371/journal.pone.0322887.g011

Fig 15 shows the results for p = 10. Compared to p = 2, many proportions of acceptable iter-
ations decrease. Especially for scale alternatives and for setting the distribution to standard
normal, smaller proportions are observed. Most Plasmode types also perform worse, except
for no resampling for the true scenario.

The results for p = 50 as shown in Fig 16 are even worse. For shift and scale alternatives,
almost all results are unacceptable. For standard normal and for all coefÏcients of the OGM
set to zero, the proportions of acceptable estimates are also often (very) low. The performance
of Plasmode except for no resampling gets worse again, especially for the Ridge model and for
some measures also for RF.

Fig 17 shows the results for p = 150. The results are similar to those for p = 50. The pro-
portions for moderate shift and scale are not as low. The proportions of acceptable itera-
tions for the ordinary Bootstrap and accuracy, AUC, and Brier score are now very low. The
performance of the 0.632-Bootstrap and no resampling also drop, but not as much. 0.632-
subsampling now performs comparably well. The results for Ridge and LASSO often show
high proportions of acceptable simulation results.
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Fig 12. Kendall distance of the simulated and true method ranking based on accuracy in 100 iterations of a classification method comparison study
per classifier for different simulation approaches with misspecifications of the OGM for p = 2.

https://doi.org/10.1371/journal.pone.0322887.g012

Discussion
We conducted a simulation study with the following tasks:

1. Compare how well parametric and Plasmode simulation can estimate the performance
and method order for several classification methods.

2. Find out how misspecifications of the data-generating process (DGP) and outcome-
generating model (OGM) affect parametric simulation in terms of estimating the per-
formance and ranking of classification methods.

3. Find out how misspecifications of the OGM and different resampling strategies affect
Plasmode simulation in terms of estimating the performance and order of classification
methods.

4. Find out how the number of covariates affects the above.

Errors in the estimation of classification performance measured by accuracy, AUC, Brier
score, F1-score, sensitivity, and specificity were compared as well as errors in the estima-
tion of the resulting method ranking of five binary classification methods including Ridge
and LASSO logistic regression, support vector machine (SVM), K-nearest neighbors (KNN),
and random forest (RF). Additionally, the proportion of acceptable estimates was analyzed.
An iteration was defined to be acceptable if its relative errors lie within the 2.5% and 97.5%
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Fig 13. Kendall distance of the simulated and true method ranking based on accuracy in 100 iterations of a classification method comparison study
per classifier for different simulation approaches with misspecifications of the scale for parametric simulation for p = 2.

https://doi.org/10.1371/journal.pone.0322887.g013

quantile interval of the errors for parametric simulation assuming the true DGP and OGM.
The analyses were each conducted for sample sizes n = 100 and numbers of variables p =
2, 10, 50, 150.

For all misspecifications, some errors could be observed for at least some combination
of classification performance measure, classifier, and number of variables p. The magnitude
and sign of the errors depended on the exact settings. Often, the errors observed for the esti-
mation of the Brier score were similar to those for accuracy but with inverted signs. Errors
for estimating F1-scores were similar to those for the sensitivity. A reason for this might be
that the F1-score is the harmonic mean of precision and recall, where recall equals sensitivity.
Errors in estimating specificities often showed inverted patterns to those for the F1-scores and
sensitivities, probably since improved classification of true ones typically leads to a worse clas-
sification of true zeroes. In general, often, more extreme errors were observed for estimating
the F1-score, sensitivity, and specificity, while only smaller errors were observed for estimat-
ing the AUC. Misspecifications of the OGM affect both parametric and Plasmode simulations
similarly. For misspecifications of the DGP, only the parametric simulation is affected. Such
misspecifications of the DGP can lead to severe errors in the parametric method comparison
study. In those cases, Plasmode is the more robust choice. Overall, the observed errors were
more severe for larger values of p in most cases.
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Fig 14. Proportion of acceptable iterations for 100 iterations of parametric and Plasmode method comparison studies under different scenarios
for different classifiers and classification performance measures for p = 2. An iteration is defined as acceptable if its relative error for the respective
measure lies within the 2.5% and 97.5% quantile of the parametric simulation error for the true scenario for that measure and classifier.

https://doi.org/10.1371/journal.pone.0322887.g014

With regard to the resampling strategies for Plasmode simulation, no clear conclusion
could be drawn. Often, 0.632-subsampling led to comparably large errors and no resampling
to comparably small errors, but this was not consistent across all classification performance
measures and all values of p. Which of the Bootstrap types performed better was different
depending on the specific scenario. The performance of the Plasmode simulations decreased
for larger values of p.

It should be noted that the smaller the resampling proportion and the higher the num-
ber of duplicate observations in the Plasmode dataset, the less information is available for the
classifier during training, which could affect its performance systematically for all resampling
types except no resampling.
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Fig 15. Proportion of acceptable iterations for 100 iterations of parametric and Plasmode method comparison studies under different scenarios
for different classifiers and classification performance measures for p = 10. An iteration is defined as acceptable if its relative errors for the respective
measure lie within the 2.5% and 97.5% quantile of the parametric simulation errors for the true scenario for that measure and classifier.

https://doi.org/10.1371/journal.pone.0322887.g015

In summary, we observed:

1. As expected, under the true scenario parametric simulation performs better than Plas-
mode with regard to estimating the classification performance.

2. Misspecifications of the DGP lead to errors in parametric simulation that quickly get
larger than the errors for Plasmode, for which we cannot misspecify the DGP directly.

3. Misspecifications of the OGM affect parametric simulation and Plasmode simulation
equally in terms of estimating the classification performance.

4. With regard to the resampling used for Plasmode, no resampling type consistently out-
performed the others. However, often no resampling at all performed well and subsam-
pling with a resampling proportion of 0.632 performed badly.

5. An increase in the number of variables decreases the ability to estimate the classification
performance, especially for Plasmode simulations.
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Fig 16. Proportion of acceptable iterations for 100 iterations of parametric and Plasmode method comparison studies under different scenarios
for different classifiers and classification performance measures for p = 50. An iteration is defined as acceptable if its relative errors for the respective
measure lie within the 2.5% and 97.5% quantile of the parametric simulation errors for the true scenario for that measure and classifier.

https://doi.org/10.1371/journal.pone.0322887.g016

One limitation of the study conducted here is that it was infeasible to keep the true OGMs
constant for different values of p and at the same time have reasonable true classification per-
formances of the classifiers. Therefore, the true OGMs depend on p and the effects due to the
OGM and due to the dimension cannot be separated. Nonetheless, the observed performance
decrease of simulations, especially for Plasmode, is in line with previous results of a study for
lower numbers of variables and the estimation of the MSE of the least squares estimator in
linear regression [7]. In that study, the true models were kept constant across different values
of p. Therefore, it seems reasonable that this effect can mainly be attributed to the value of p
rather than the subtle differences in the OGMs. In contrast, the shift of variables had almost
no effect for p = 2 and p = 10, but clear effects for larger p. This could be explained by the con-
crete coefÏcients of the models for the lower ps and therefore can probably be attributed to the
differences in the models rather than to the dimension of the data. Overall, the scalability of
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Fig 17. Proportion of acceptable iterations for 100 iterations of parametric and Plasmode method comparison studies under different scenarios for
different classifiers and classification performance measures for p = 150. An iteration is defined as acceptable if its relative errors for the respective
measure lie within the 2.5% and 97.5% quantile of the parametric simulation errors for the true scenario for that measure and classifier.

https://doi.org/10.1371/journal.pone.0322887.g017

Plasmode simulations seems questionable since we observed increasing errors for increasing
numbers of variables in both studies. More research regarding this aspect is needed. On the
other hand, in practical applications, the use of parametric simulation for high-dimensional
data is hard as the number of marginal distributions and especially the number of pairwise
correlations to be specified increases with the number of variables. Thus, it is reasonable to
assume that the problem of over-simplification and therefore misspecifications of the DGP
in parametric simulation also increases with the number of variables. The chosen numbers
of variables p in this study represent the range of common numbers of variables of real-world
datasets of low to moderately high dimensions. They are however not representative of ultra-
high-dimensional data. Higher numbers of variables were infeasible to use within the simula-
tion study due to runtime.
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Another limitation of this study is that the number of samples and the true OGM and
DGP were not varied which restricts the scope of this study. This limited number of scenar-
ios, the comparably low number of iterations per scenario, and the exclusion of some classi-
fiers are due to the high runtime and limited computing capacity. The effect of changing the
number of samples and the true OGM and DGP are left open for further research.
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