How biostatistical methods mature: understanding the four phases of methodological research

Georg Heinze

Institute of Clinical Biometrics

Credits

DOI: 10.1002/bimj.202200222

RESEARCH ARTICLE

Biometrical Journal

Phases of methodological research in biostatistics—Building the evidence base for new methods

Georg Heinze¹ | Anne-Laure Boulesteix² | Michael Kammer^{1,3} | Tim P. Morris⁴ | Ian R. White⁴ | on behalf of the Simulation Panel of the STRATOS initiative

Anne-Laure Boulesteix Michael Kammer

Tim Morris

Ian White

Motivation

- Many new biostatistical methods are being proposed
- Few of them are used in practice
- If specific methods are used, can we trust them?
 - Which methods can we safely use in data analyses?
 - Which methods still lack appropriate validation or have hidden pitfalls?

• → We introduced a framework that looks at biostatistical method development similarly as drug development in clinical medicine

Learning from drug development

Phases of research as a framework for building evidence

Drug development

Phase 1: Safety

Phase 2: Preliminary efficacy

Phase 3: Confirmed efficacy

Phase 4: Long-term

Biometrical methods

Phase 1: Theory

Phase 2: Limited comparison Phase 3: Broad comparison

Phase 4: Optimal use

Heinze, Boulesteix et al, Biometrical Journal 2024

The four phases

Phase	Scope	Typical Activities	Outcome
1	Introduction of a new method	Theoretical development, proofs, asymptotics, basic illustrations	Demonstrates theoretical validity
II	Initial application and evaluation	Limited simulations, real-life applications that are not too complex (with "cleaned data",). Inventor usually involved	Demonstrates usefulness, but still with caution, restricted to the specific investigated settings
III	Broader evaluation and comparison of still relatively new method (compared to other probably established or new methods)	Neutral comparison studies (inventor bias avoided or transparently disclosed), extensive simulations, diverse real-world examples	Comparative performance, strengths, limitations
IV	Evidence synthesis and increased understanding about a method that has been in use for some time (,postmarketing')	Reviews, complex applications, wide simulations in new, previously unconsidered settings, identification of possible pitfalls, development of diagnostics for a method	Clarifies when the method is preferable over others, or comparable to others, or when it should not be used and why

What each phase adds

- Phase I: lays theoretical basis, toy examples
- Phase II: adds real example, limited comparisons (comparator methods/DGMs), still inventor-biased
- Phase III: comparisons become broad and neutral
- Phase IV:
 after many years in use: extended comparisons, evidence synthesis, detection and
 description of possible pitfalls in application,
 when is the method (not) preferred?

Can we easily classify papers/studies/implementations into phases?

- Some experience:
- Early phases focus on method development, later phases on evaluations/comparisons for specific applications
- Phase I and II are separated in our framework, but are often combined in practice
- Most studies contribute to a phase but do not conclude it
- Distinguish phase of development of method from development of software
- Feedback loop: detection of pitfalls in Phase IV may lead to proposal of a correction/modification, which itself starts again its lifecycle

Assessing papers for their phases

We assessed some papers manually and with the use of AI:

- Many papers published in biostatistical journals can be assigned to Phase II
- Few studies are pure Phase I (probably found in more theoretical journals)
- Few studies Phase III, even fewer Phase IV

 → The discipline is heavily weighted toward early phases of methodological development

Consequences of the dominance of new methods

- Lack of full understanding about new methods
- Over-confidence when using them
 - particularly when their inventors are using them
- Practictioners would need critical, evidence based guidance for safe selection and application of proper methods
 - But this evidence base is often lacking
- Uncritical application of new methods may have lead to widespread errors in interpretation (of medical studies)
- Also the opposite may be true: methods may have been said to perform poorly, but are actually robust choices

Recommendations for the biostatistical community (1)

Researchers:

- Prioritize well-planned Phase III and IV studies!
 - Don't take it easy, these studies are tough!
 - Publish your simulation protocols, let the community participate
- Emphasize the strengths, but don't hide pitfalls and shortcomings of methods!
- Embrace ,adversarial collaborations' to ensure rigorous and unbiased comparisons!

Recommendations for the biostatistical community (2)

- Journal editors and reviewers:
 - Still, proposals of new methods are considered more, innovative than comparisons of existing methods (, yet another simulation paper)
 - But: comprehensive evaluation of existing methods is very valuable for the health of the discipline!
 - Actively solicit and prioritize Phase III and IV studies, and tutorials and reviews!
 - Let authors declare which phase (they think) their research contributes to!
 - Let reviewers assess which phase (they think) a paper contributes to!

Recommendations for the biostatistical community (3)

Practitioners:

- Use our framework as a lens to critically evaluate new methods before adoption!
- Foster a culture of methodological quality from the ground up!
 - Provide the reasons why in an analysis you preferred a specific method over others!
 - Is there a solid evidence base for your decision?
 - Register analysis protocols
 - Enable reproducibility of analyses (share: code, data, IDA results, history of SAP, ...)
 - Follow reporting guidelines

Three fine examples for methods development and evaluation

- · Michal Abrahamowicz: Weighted cumulative exposure modeling
- Willi Sauerbrei: MFPI
- Ewout Steyerberg: Net benefit and Net reclassification index

Putting the examples into the phases context

- When and how were negative aspects of the method discovered and published?
- How was neutrality seeked for in phase 3 and phase 4?
- When and how was the method first used in applications?
 - By the inventors or by other researchers?
 - At which phase?