Integrating initial data analysis into statistical analysis plans Carsten O. Schmidt on behalf of TG3 #### What is Initial Data Analysis (IDA)? IDA = systematic process to provide reliable knowledge about the data to determine the suitability of the data for the main data analysis - Aligned with the research aims and the main data analysis - Does NOT include hypothesis generating activities - Does NOT include assessing associations between predictors and outcomes IDA framework: metadata setup; data cleaning; data screening; initial data reporting; documenting and reporting IDA. #### The foundation matters..... #### Statistical Analysis Plan for Observational Studies | METHODS: MAIN DATA ANALYSIS (MDA) | | | | | | |-----------------------------------|-----|--|--|--|--| | Description of observation units | 5.1 | Describe methods of analysis to summarize the characteristics of the observation units | | | | | Main data analysis methods | 5.2 | Describe the methods of analysis for each research objective, including the quantities to be estimated, the models or estimators, variables, and methods to mitigate potential bias for non-random selection | | | | | Assumptions and diagnostics | 5.3 | State any statistical assumptions of each analysis. Specify all measures and diagnostics used to evaluate statistical assumptions and appropriateness of analyses, including graphical tools | | | | | Nominia 0174 | | Describe how the sample size was determined, including all assumptions supporting the sample size calculation | | | | | Software 5.5 | | Describe software used for all analyses, visualizations, data management, data archiving, or backups | | | | Assumes "appropriate" ____ dataset - Changes mid-analysis - Ad-hoc decisions non-transparent - Time consuming repeating analyses #### Under standing data structures and processing steps #### Example: Univariable distributions Univariate summary of Blood urea nitrogen [mg/dl] original [left] vs. pseudo-log transformed scale [right] All observed values, the distribution and the, min, max and interquartile range are reported n = 14519 subjects displayed. 172 subjects with missing values are not presented. Pseudo-log transformation is suggested. Log transformation to stabilize the distribution of a predictor ### Example: IDA in longitudinal studies Table 2. Number of interviews per participant. | Interviews per participant | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |----------------------------|------|------|------|------|------|------|------| | Frequency | 965 | 966 | 1508 | 527 | 307 | 685 | 494 | | Proportion | 0.18 | 0.18 | 0.28 | 0.10 | 0.06 | 0.13 | 0.09 | ### Data quality assessment – Report #### SAPI: Statistical Analysis Plan with IDA ## METHODS: INITIAL DATA ANALYSIS (IDA) | Data preparation | 6.1 | |-------------------------------|-----| | Unit missingness | 6.2 | | Unit profile | 6.3 | | Item missingness | 6.4 | | Univariable
descriptions | 6.5 | | Multivariable
descriptions | 6.6 | Choices are deliberate: aligned with research objectives and MDA. After performing IDA | EVALUATION | AND UP | DATES | |---------------------|--------|---| | Evaluating the SAPI | 7.1 | Indicate if an update of the SAPI is needed after IDA This information is provided after completion of IDA If there is no need for an update, this should be stated | # Roadmap for Statistical Analysis Plan for Observational Studies (SAPI) SAP guideline developed via a (international) consensus process with researchers, analysts, editors/reviewers, instructors/mentors. #### Iterative process of developing an analysis plan #### Organizing knowledge about data: Metadata Variable names Label Type (integer, string, date,..) Values (categories) Range (continuous) Expectations (distribution, missingness,...) | A | В | С | D | Ē | F | G | Н | I | J | |-----------|---|--|--|---|--|---|--|---|--| | VAR_NAMES | LABEL | DATA_TYPE | SCALE_LEVEL | VALUE_LABELS | MISSING_LIST_TABLE | HARD_LIMITS | DETECTION_LIMITS | SOFT_LIMITS | DISTRIBUTIO | | v00000 | CENTER_0 | integer | nominal | 1 = Berlin 2 = Hamburg | g 3 = Leipzig 4 = Co | ogne 5 = Munic | ch | | | | v00001 | PSEUDO_ID | string | na | | | | | | | | v00002 | SEX_0 | integer | nominal | 0 = females 1 = males | | | | | | | v00003 | AGE_0 | integer | ratio | 111 | | [18;Inf) | | 2 | | | v00103 | AGE_GROUP_0 | string | ordinal | | | We. | | | | | v01003 | AGE_1 | integer | ratio | | | [18;Inf) | | | | | v01002 | SEX_1 | integer | nominal | 0 = females 1 = males | | | | | | | v10000 | PART_STUDY | integer | nominal | 0 = no 1 = yes | | | | | | | v00004 | SBP_0 | float | ratio | | missing_table | [80;180] | [0;265] | (90;170) | normal | | v00005 | DBP_0 | float | ratio | | missing_table | [50;Inf) | [0;265] | (55;100) | normal | | v00006 | GLOBAL_HEALTH_ | V float | ratio | | missing_table | [0;10] | | [1;9] | uniform | | v00007 | ASTHMA_0 | integer | nominal | 0 = no 1 = yes | missing_table | [0;1] | | | | | v00008 | VO2_CAPCAT_0 | string | ordinal | A = excellent < B = good | missing_table | | | | | | v00009 | ARM_CIRC_0 | float | ratio | 2.011 | missing_table | [0;Inf) | | (0;60] | normal | | v00109 | ARM_CIRC_DISC_C | 0 integer | ordinal | 1 = (-Inf,20] < 2 = (20,30) | missing_table | [1;3] | | | | | v00010 | ARM_CUFF_0 | integer | ordinal | 1 = (-Inf,20] < 2 = (20,30) | missing_table | [1;3] | | | | | | VAR_NAMES
v00000
v00001
v00002
v00003
v00103
v01003
v01002 | VAR_NAMES LABEL v00000 CENTER_0 v00001 PSEUDO_ID v00002 SEX_0 v00003 AGE_0 v01003 AGE_GROUP_0 v01002 SEX_1 v10000 PART_STUDY v00004 SBP_0 v00005 DBP_0 v00006 GLOBAL_HEALTH_' v00007 ASTHMA_0 v00008 V02_CAPCAT_0 v00009 ARM_CIRC_0 v00109 ARM_CIRC_DISC_0 | VAR_NAMES LABEL DATA_TYPE v00000 CENTER_0 integer v00001 PSEUDO_ID string v00002 SEX_0 integer v00003 AGE_0 integer v00103 AGE_GROUP_0 string v01003 AGE_1 integer v01002 SEX_1 integer v10000 PART_STUDY integer v00004 SBP_0 float v00005 DBP_0 float v00006 GLOBAL_HEALTH_V float v00007 ASTHMA_0 integer v00008 VO2_CAPCAT_0 string v00009 ARM_CIRC_0 float v00109 ARM_CIRC_DISC_0 integer | VAR_NAMES LABEL v00000 CENTER_0 integer nominal v00001 PSEUDO_ID string na v00002 SEX_0 integer nominal v00003 AGE_0 integer ratio v00103 AGE_GROUP_0 string ordinal v01003 AGE_1 integer ratio v01002 SEX_1 integer nominal v10000 PART_STUDY integer nominal v00004 SBP_0 float ratio v00005 DBP_0 float ratio v00006 GLOBAL_HEALTH_V float ratio v00007 ASTHMA_0 integer nominal v00008 VO2_CAPCAT_0 string ordinal v00009 ARM_CIRC_DISC_0 float ratio v00109 ARM_CIRC_DISC_0 integer ordinal | VAR_NAMES LABEL DATA_TYPE SCALE_LEVEL VALUE_LABELS v00000 CENTER_0 integer nominal 1 = Berlin 2 = Hamburg v00001 PSEUDO_ID string na v00002 SEX_0 integer nominal 0 = females 1 = males v00003 AGE_0 integer ratio v01003 AGE_GROUP_0 string ordinal v01003 AGE_1 integer nominal 0 = females 1 = males v10002 SEX_1 integer nominal 0 = no 1 = yes v10000 PART_STUDY integer nominal 0 = no 1 = yes v00004 SBP_0 float ratio v00005 DBP_0 float ratio v00006 GLOBAL_HEALTH_V float ratio v00007 ASTHMA_0 integer nominal 0 = no 1 = yes v00008 VO2_CAPCAT_0 string ordinal A = excellent < B = good | VAR_NAMESLABELDATA_TYPESCALE_LEVELVALUE_LABELSMISSING_LIST_TABLEV00000CENTER_0integernominal1 = Berlin 2 = Hamburg 3 = Leipzig 4 = ColV00001PSEUDO_IDstringnaV00002SEX_0integernominal0 = females 1 = malesV00003AGE_0integerratioV01003AGE_GROUP_0stringordinalV01002SEX_1integernominal0 = females 1 = malesV10000PART_STUDYintegernominal0 = no 1 = yesV00004SBP_0floatratiomissing_tableV00005DBP_0floatratiomissing_tableV00006GLOBAL_HEALTH_V floatratiomissing_tableV00007ASTHMA_0integernominal0 = no 1 = yesmissing_tableV00008VO2_CAPCAT_0stringordinalA = excellent < B = good | VAR_NAMES LABEL DATA_TYPE SCALE_LEVEL VALUE_LABELS MISSING_LIST_TABLE HARD_LIMITS v00000 CENTER_0 integer nominal 1 = Berlin 2 = Hamburg 3 = Leipzig 4 = Cologne 5 = Munion v00001 PSEUDO_ID string na 0 1 = males 0 1 = males 0 0 0 0 0 0 0 0 0 0 0 | VAR_NAMES LABEL DATA_TYPE SCALE_LEVEL VALUE_LABELS MISSING_LIST_TABLE HARD_LIMITS DETECTION_LIMITS v00000 CENTER_0 integer nominal 1 = Berlin 2 = Hamburg 3 = Leipzig 4 = Cologne 5 = Munich v00001 PSEUDO_ID string na | VAR_NAMES LABEL DATA_TYPE SCALE_LEVEL VALUE_LABELS MISSING_LIST_TABLE HARD_LIMITS DETECTION_LIMITS SOFT_LIMITS v00000 CENTER_0 integer nominal 1 = Berlin 2 = Hamburg 3 = Leipzig 4 = Cologne 5 = Munich | #### One challenge - what granularity is needed? #### IDA.... - 1. ... is the foundation for correct statistical analyses - 2. ... should be included in statistical analysis plans to - better structure comprehensive IDA in the full analysis workflow - better estimate needed resources - better oversee the needed meta-information