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A joint project between TG2 and TG4

TG2

Selection of variables and functional forms in
multivariable analysis

Aim: Derive guidance for variable and function
selection in multivariable analysis.

Main focus: identify influential variables and
gain insight into their individual and joint
relationship with the outcome. Two of the
(interrelated) main challenges are selection
of variables for inclusion in a multivariable
explanatory model, and choice of
functional forms for continuous variables

TG4

Measurement error and misclassification

Aim: Increase awareness of problems caused by

measurement error and misclassification in
statistical analyses and remove barriers to use
statistical methods that deal with such problems.

Key messages: Considering measurement
error is necessary because it may have an
impact on the study results.

Special statistical methods are used to
account for measurement error.

Additional information is required about the
type and size of the measurement error to
adjust for measurement error.
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Aim of the joint project

We are interested in learning the regression relationship between outcome and

covariate(s) when is measured with error.
 Classical Measurement Error Model (CME)
, Whereis random variable with mean 0, independent of and.

* Impact on the regression relationship
« Attenuation Bias: Measurement error leads to attenuation of the estimated regression coefficients.

* Loss of Precision: Increased variance in the estimates. Effective sample size is reduced due to the
error variance.

* When X is not linearly related with Y: E(Y|X)=f(X).

* Function is unknown, requiring flexible estimation methods
* Observingmeasured with error distorts the identification of the functional form



Available methods

when X is measured exactly when X measured with error and f(X) is linear
Popular methods: Popular methods:
* B-splines and natural splines * Regression calibration
* P-splines * Multiple imputation
* Fractional polynomials * Bayesian estimation
* SIMEX

All these remove bias but do not
recover lost precision.



Research objectives

To compare the following methods of estimating f(X) using simulated datasets:

Regression Calibration | ~ B-Splines

Multiple Imputation Ly — P-splines

Bayes Fractional Polynomials
SIMEX _

— Natural Cubic Splines




Stage 1 Blinded Method Development

Data Generation Team > SQ:::S > 3 Methods Teams >Sme't > Data Generation Team

code
Simulates 5 datasets and Create code to apply methods Runs code
standardizes spline methods . i hrat
P Regrgssmn Callbr.atlon & Evaluates and presents

* Cubic B-splines with one interior Multiple Imputation blinded results

knot * Bayes
* P-splines with 10 interior knots, e SIMEX

penalty optimised by methods

teams

* Fractional Polynomials (4df)

Stage 2 Extensive Unblinded Evaluation Stage 3 Extension and Replication

Data Generation Team }scggfnﬂ °> Data Generation Team > Replication > Data Generation Team

Simulates variants of 5 datasets Addition of natural cubic splines Evaluates and presents

Runs code .
: . 150 datasets
150 unique datasets, building on the 5 Evaluates and presents unblinded results_; -\~ 4 10 unblinded results

original functions but varying key . .
parameters like sample size, measurement times, creating a

error variance, and the error distribution. total of 1500
datasets



Data Generation and Evaluation Team
(Anne Thiebaut, Laurence Freedman, Aris Perperoglou, Mohammed Sedki)

e Data generation: Binary outcome Y linked to continuous X by logistic
regression

with undisclosed values or distribution of and undisclosed form of .

In place of , values of * (perturbed by classical measurement error) were
provided. Variance and distribution of measurement error were undisclosed, but a

subset of replicated values of * were provided.

e Evaluation of results: Mean squared error of estimated compared to true
evaluated over the central 95% of the distribution of In stages 2,3 logMSE was

used
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Imputation methods
(Victor Kipnis, Douglas Midthune, Kevin Dodd, Amer Moosa, Brian Barrett,
Matthew Chaloux)

e Regression calibration estimates the conditional expectation of the function
given the error prone covariate X* and substitutes it for the true covariate in the

logistic regression.

e Multiple imputation: The imputed consists of its conditional expectation given
X* and Y plus the imputed value of the regression residual. Imputation is done
several (usually 10) times using different model parameter values from the
corresponding estimated distributions
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Bayesian Method

(Paul Gustafson, Raymond Carroll, Frank Harrell, Nadja Klein)

The team specified:
* an outcome model (for Y given X)
* an exposure model for X
* a measurement error model for X* given X
* prior distributions for parameters in each of the three sub-models

* This defined a joint posterior distribution of all parameters and latent X values,
given all the observed data.

* Given a dataset, off-the-shelf MCMC software yields (a Monte Carlo
approximation to) this posterior distribution.

* Summaries of the posterior distribution used for inference, e.g., posterior means
of parameters in the outcome model are point estimates.

11



Simulation-Extrapolation (SIMEX)

(Michal Abrahamowicz and Steve Ferreira Guerra)

A 2-step method, Cook and Stefanski (1994), adapted to various measurement error
problems Carroll (2006)

General idea

Sequentially simulate new variables with increasing measurement error. Use generated
variables to estimate parameter of interest; each estimate being increasingly biased. This
establishes a relationship between amount of bias and amount of measurement error.
Finally, extrapolate this relationship back to the case of no error.

For this project, we used two alternative SIMEX approaches:
1) Apply SIMEX to the individual points on the curve
2) Apply SIMEX to the B-spline or FP coefficients (not for P-splines)
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The forms of f(X) used in the simulations
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Blinded results from Stage 1 & Benchmarks

Method Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Average .
A 0.0051 0.00122 0.00518 0.0033 0.0084 0.0046 Two sorts of benchmarks:
B 0.0034 0.00149 0.00454 0.0039 0.0103 0.0047 ’ (
C 0.0078 0.00264 0.00278 0.0033 0.0156 0.0064 1. MSEs based on exact X’s (lower
D 0.0089 0.00250 0.00400 0.0038 0.0143 0.0067 boun d)
E 0.0058 0.00161 0.00822 0.0065 0.0130 0.0070 . .
F 0.0054 0.00159 0.00893 0.0069 0.0137 0.0073 2. MSEs based on unadjusted Spllne
G 0.0068 0.00236 0.00430 0.0052 0.0223 0.0082
H 0.0081 0.00238 0.00576 0.0043 0.0257 0.0092 methods
] 0.0074 0.00094 0.01079 0.0127 0.0141 0.0092
K 0.0067 0.00098 0.01078 0.0142 0.0131 0.0092
L 0.0082 0.00111 0.00550 0.0161 0.0181 0.0098
M 0.0111 0.00591 0.00445 0.0096 0.0190 0.0100 Method Dataset Dataset Dataset Dataset Dataset Average
N 0.0083 0.00088 0.00663 0.0167 0.0184 0.0102 1 2 3 4 5
0.0106 0.00452 0.00440 0.0140 0.0182 0.0103
P Bench-B 0.0029 0.00160 0.00203 0.0034 0.0040 0.0028
Q 0.0101 0.00080 0.00722 0.0150 0.0200 0.0106 X
R 0.0108 0.00040 0.00683 0.0157 0.0209 0.0109
S 0.0099 0.00073 0.00840 0.0165 0.0207 0.0112 Bench-P 0.0035 0.00008 0.00280 0.0029 0.0035 0.0026
T 0.0108 0.00047 0.00699 0.0160 0.0220 0.0113 X
U 0.0127 0.00090 0.00555 0.0170 0.0261 0.0124 B B 124 44 4 ) 11 11
v 0.0064 0.00097 0.00919 0.0188 0.0339 0.0139 xgnch 8 SHRE) | Gt Ll LEE UREE
w 0.0060 0.00102 0.01012 0.0166 0.0369 0.0141
X 0.0139 0.00135 0.01397 0.0326 0.0161 0.0156 Bench-P 0.0101 0.00418 0.00850 0.0023 0.0314 0.0113
Y 0.0137 0.00141 0.01457 0.0322 0.0167 0.0157 X*
7 0.0234 0.00345 0.01085 0.0447 0.0238 0.0212
AA 0.0318 0.00057 0.00597 0.0545 0.0171 0.0220
AB 0.0266 0.00057 0.00596 0.0634 0.0169 0.0227
AC 0.0320 0.00129 0.01277 0.0543 0.0135 0.0228
AD 0.0368 0.00177 0.01193 0.0531 0.0289 0.0265
AE 0.0448 0.00112 0.01355 0.0580 0.0160 0.0311
AF 0.0812 0.00359 0.00627 0.0697 0.0360 0.0394

N~ 00626 0 00045 0 00646 01515 0 0339 00518



Simulations

Stage 2

Same 5 forms of Y-X relationships: logit(P(Y=1|
X))=f(X)

Main sample sizes: 30000, 15000, 5000, 2000
Replication substudy sample sizes: 250, 750

Measurement error variances: 0.5*var(X),
1.0*var(X)

Error distribution: Normal, Gamma (shape
parameter 3) adjusted to have mean O

All combinations of above, except the Stage 1
combination, leading to 150 datasets

Code finalized after Stage 1 used by Data
Generation and Evaluation Team to run on all 150
datasets

Added natural cubic splines.

Stage 3

* Each of the 150 datasets was simulated 10
times to provide repeat observations for
calculating standard errors and confidence
intervals.

* The final comprehensive analysis was based
on a total of 1,500 distinct datasets



Selected results Stage 2: Graphs of J-shape

Multiple Imputation Bayes SIMEX (pointwise)
and Regression Calibration

Imputation_dataset_1_comb_1 Bayes_bs_fp_ps1_comb_1 SIMEX_Pointwise_1_comb_1
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Selected results Stage 2: Graphs of Saturation

Multiple Imputation Bayes SIMEX (pointwise)
and Regression Calibration

Y5
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Selected results Stage 2: Graphs of Threshold2

Multiple Imputation Bayes SIMEX (pointwise)
and Regression Calibration

Y4
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0.0148
0.0196
0.0155
0.0309
0.0570
0.0580
0.0549
0.1441
0.1347
0.1733
0.3035
0.0811
0.0767
0.0768
0.0797
0.5421

0.0083
0.0055
0.0083
0.0275
0.0299
0.0178
0.0360
0.0116
0.0266
0.0295
0.1396
0.0387
0.0356
0.0434
0.0508
0.4455

0.0096
0.0084
0.0103
0.0165
0.0192
0.0174
0.0261
0.0119
0.0166
0.0170
0.1163
0.2173
0.2486
0.3831
0.3438
0.9507

0.0098
0.0083
0.0098
0.0177
0.0199
0.0211
0.0199
0.0202
0.0327
0.0368
0.1088
0.3864
0.7552
0.9998
4.0515
0.8475

0.0199
0.0229
0.0288
0.0346
0.0430
0.0583
0.0522
0.0276
0.0266
0.0314
0.1000
0.2115
0.1589
0.2126
0.2191
0.6738

Stage 2 Extension: MSE means over combinations of smaller
sample size scenarios

0.0125
0.0129
0.0145
0.0254
0.0338
0.0345
0.0378
0.0431
0.0474
0.0576
0.1536
0.1870
0.2550
0.3431
0.9490
0.6919



Main Results Phase 2

* SIMEX better than {MI, RC, Bayes}
* {P-Spline, FP, Natural spline} better than the B-Spline
» X-Y relationship: Linear > Threshold change-point below median >

{Saturation, Threshold change-point above median} > J-shape

* Main study sample size: 30,000 > 15,000 > 5,000 > 2,000; but
improvement was greatest between 2000 and 5000.

* Replicate sub-study sample size: 750 > 250, as expected, but not
equally for all methods

* Measurement error magnitude: 0.5*Var(X) > 1.0*Var(X), as expected,
but not equally for all methods




Method

elected results Stage 3: logMSE

Performance of Methods Across Simulation Scenarios
Geometric Mean MSE (x 1000) with 95% Confidence Intervals

Average Scenario 1 Scenario 2

Without error PS - L ——
Without error BS - - R
Without error FP - L ——
Without error NS - -> .
SIMEX-PS L =
SIMEX-FP 4 - ——
SIMEX-NS - -
SIMEX-BS - —— -
Bayes-FP logit - - ——
Bayes-NS logit L ) 2 o ——
RC-PS T fa—— —
RC-NS - B -
RC-FP * —— —
Bayes-PS logit - Ll ir -8
MI-PS - —— i
MI-FP e - [re——
MI-NS - - ——
MI-BS i —— f .
RC-BS - - —-.-
Bayes-BS logit - —— ——
3 10 30 100 10 30 100 1 10

Scenario 3 Scenario 4 Scenario 5

Without error PS 2} sl -
Without error 35 == -t i
Without error FP . Y P
Without error NS s o - & o
SIMEX-PS ey @ HP
SIMEX-FP - o o
SIMEX-NS —- - .-
SIMEX-BS s e o e
Bayes-FP logit o
Bayes-NS logit —
RC-PS S —— & i
RC-NS ——
RC-FP —8—
Bayes-PS logit . . o
MI-PS —— ——
MI-FP — = ——
MI-NS e —e— ——
MI-BS = ———— o
RC-BS = = —— = B
Bayes-B5S logit —— —— ——
3 10 30 3 10 30 a3 10 30 100
Geometric Mean MSE (Log Scale)



Key findings

* Surprising Results: Our blinded study challenged conventional wisdom, revealing an
unexpected performance hierarchy among methods. We suspect that SIMEX might be
more robust in complex models.

* Value of Neutral Comparison: This work highlights that blinded, unbiased studies are
crucial for rigorously evaluating statistical methods, much like clinical trials in medicine.

* Top Performer: SIMEX consistently proved to be the most accurate and robust method
across most scenarios.

* Observed Hierarchy: The general performance ranking was:
SIMEX > Bayes (with FP/NS) > Ml / RC.

* A Key Caution: The Bayesian approach, when combined with B-splines, performed
poorly and should be used with caution in this context.

* Take-Home Message: Adjusting for measurement error is critical. The choice of method
has a profound impact, and this study provides some evidence to guide researchers, still
further work is needed... Two papers to be made public out of this work...
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