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A joint project between TG2 and TG4

TG2
Selection of variables and functional forms in 

multivariable analysis

Aim: Derive guidance for variable and function 
selection  in multivariable analysis.

Main focus: identify influential variables and 

gain insight into their individual and joint 

relationship with the outcome. Two of the 

(interrelated) main challenges are selection 

of variables for inclusion in a multivariable 

explanatory model, and choice of 

functional forms for continuous variables 

TG4
Measurement error and misclassification

Aim: Increase awareness of problems caused by  
measurement error and misclassification in 
statistical analyses and remove barriers to use 
statistical methods that deal with such problems.

Key messages: Considering measurement 
error is necessary because it may have an 
impact on the study results.

Special statistical methods are used to 
account for measurement error. 

Additional information is required about the 
type and size of the measurement error to 
adjust for measurement error.



We are interested in learning the regression relationship between outcome   and 

covariate(s)  when  is measured with error.

• Classical Measurement Error Model (CME)

, whereis random variable with mean 0,  independent of  and . 

• Impact on the regression relationship
• Attenuation Bias: Measurement error leads to attenuation of the estimated regression coefficients. 

• Loss of Precision: Increased variance in the estimates. Effective sample size is reduced due to the 
error variance.

• When  is not linearly related with � �:  E( | )= ( ).� � � �
• Function  is unknown, requiring flexible estimation methods
• Observingmeasured with error distorts the identification of the functional form

Aim of the joint project



when X is measured exactly

Popular methods: 

• B-splines and natural splines

• P-splines

• Fractional polynomials

when X measured with error and f(X) is linear

Popular methods: 

• Regression calibration

• Multiple imputation

• Bayesian estimation

• SIMEX

All these remove bias but do not 
recover lost precision.

Available methods



Research objec琀椀ves

To compare the following methods of es琀椀ma琀椀ng f(X) using simulated datasets: 

Regression Calibra琀椀on B-Splines

Mul琀椀ple Imputa琀椀on P-splines

Bayes Frac琀椀onal Polynomials

SIMEX                                                        Natural Cubic Splines 

X



Data Genera琀椀on Team

Simulates 5 datasets and 
standardizes spline methods

• Cubic B-splines with one interior 
knot

• P-splines with 10 interior knots, 
penalty op琀椀mised by methods 
teams

• Frac琀椀onal Polynomials (4df)

3 Methods Teams

Create code to apply methods 

• Regression Calibra琀椀on & 
Mul琀椀ple Imputa琀椀on

• Bayes

• SIMEX

Data Genera琀椀on Team

Runs code

Evaluates and presents 
blinded results

Shares 
data

Submit 
code

Stage 1  Blinded Method Development

Data Genera琀椀on Team

Simulates variants of 5 datasets

150 unique datasets, building on the 5 
original func琀椀ons but varying key 
parameters like sample size, measurement 
error variance, and the error distribu琀椀on.

Data Genera琀椀on Team

Addi琀椀on of natural cubic splines

Runs code

Evaluates and presents unblinded results

Data Genera琀椀on Team

Evaluates and presents 
unblinded results

Stage 2 Extensive Unblinded Evaluation Stage  3 Extension and Replication

Discussion on 
DGM

Replica琀椀on

150 datasets 
simulated 10 
times, creating a 
total of 1500 
datasets
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Data Genera琀椀on and Evalua琀椀on Team
(Anne Thiebaut, Laurence Freedman, Aris Perperoglou, Mohammed Sedki)

 Data genera琀椀on:  Binary outcome Y linked to con琀椀nuous X by logis琀椀c 

regression

   with undisclosed values or distribu琀椀on of and undisclosed form of . 

     In place of , values of * (perturbed by classical measurement error) were 

provided. Variance and distribu琀椀on of measurement error were undisclosed, but a 

subset of replicated values of * were provided.  

 Evalua琀椀on of results: Mean squared error of es琀椀mated  compared to true  

evaluated over the central 95% of the distribu琀椀on of In stages 2,3 logMSE was 

used
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Imputa琀椀on methods
(Victor Kipnis, Douglas Midthune, Kevin Dodd, Amer Moosa, Brian Barre琀琀, 
Ma琀琀hew Chaloux)

 Regression calibra琀椀on es琀椀mates the condi琀椀onal expecta琀椀on of the func琀椀on  

given the error prone covariate X* and subs琀椀tutes it for the true covariate in the 

logis琀椀c regression.

 Mul琀椀ple imputa琀椀on: The imputed  consists of its condi琀椀onal expecta琀椀on given 

X* and Y plus the imputed value of the regression residual. Imputa琀椀on is done 

several (usually 10) 琀椀mes using di昀昀erent model parameter values from the 

corresponding es琀椀mated distribu琀椀ons 
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Bayesian Method
(Paul Gustafson, Raymond Carroll, Frank Harrell, Nadja Klein)

The team speci昀椀ed:

• an outcome model (for Y given X)

• an exposure model for X

• a measurement error model for X* given X

• prior distribu琀椀ons for parameters in each of the three sub-models

• This de昀椀ned a joint posterior distribu琀椀on of all parameters and latent X values, 
given all the observed data.

• Given a dataset, o昀昀-the-shelf MCMC so昀琀ware yields (a Monte Carlo 
approxima琀椀on to) this posterior distribu琀椀on. 

• Summaries of the posterior distribu琀椀on used for inference, e.g., posterior means 
of parameters in the outcome model are point es琀椀mates.
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Simula琀椀on-Extrapola琀椀on (SIMEX)
(Michal Abrahamowicz and Steve Ferreira Guerra)

A 2-step method, Cook and Stefanski (1994), adapted to various measurement error 
problems Carroll (2006)

General idea

Sequen琀椀ally simulate new variables with increasing measurement error. Use generated 
variables to es琀椀mate parameter of interest; each es琀椀mate being increasingly biased. This 
establishes a rela琀椀onship between amount of bias and amount of measurement error. 
Finally, extrapolate this rela琀椀onship back to the case of no error.

For this project, we used two alterna琀椀ve SIMEX approaches:

1) Apply SIMEX to the individual points on the curve

2) Apply SIMEX to the B-spline or FP coe昀케cients (not for P-splines)



The forms of f(X) used in the simula琀椀ons
Inspired by the J-shaped relationship 
between body mass index (BMI) and 

mortality 

Association reported between dietary fat 
intake and breast cancer incidence Based on models for air pollution and mortal

Based on air pollution 
models but assumed an 
exponential increase in 

risk above the threshold, 

Inspired by the Hill 
equation used in 
pharmacology to 

model a drug's dose-
response relationship



Blinded results from Stage 1 & Benchmarks
Method Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Average

A 0.0051 0.00122 0.00518 0.0033 0.0084 0.0046
B 0.0034 0.00149 0.00454 0.0039 0.0103 0.0047

C 0.0078 0.00264 0.00278 0.0033 0.0156 0.0064

D 0.0089 0.00250 0.00400 0.0038 0.0143 0.0067

E 0.0058 0.00161 0.00822 0.0065 0.0130 0.0070

F 0.0054 0.00159 0.00893 0.0069 0.0137 0.0073

G 0.0068 0.00236 0.00430 0.0052 0.0223 0.0082

H 0.0081 0.00238 0.00576 0.0043 0.0257 0.0092

J 0.0074 0.00094 0.01079 0.0127 0.0141 0.0092

K 0.0067 0.00098 0.01078 0.0142 0.0131 0.0092

L 0.0082 0.00111 0.00550 0.0161 0.0181 0.0098

M 0.0111 0.00591 0.00445 0.0096 0.0190 0.0100

N 0.0083 0.00088 0.00663 0.0167 0.0184 0.0102

P 0.0106 0.00452 0.00440 0.0140 0.0182 0.0103

Q 0.0101 0.00080 0.00722 0.0150 0.0200 0.0106

R 0.0108 0.00040 0.00683 0.0157 0.0209 0.0109

S 0.0099 0.00073 0.00840 0.0165 0.0207 0.0112

T 0.0108 0.00047 0.00699 0.0160 0.0220 0.0113

U 0.0127 0.00090 0.00555 0.0170 0.0261 0.0124

V 0.0064 0.00097 0.00919 0.0188 0.0339 0.0139

W 0.0060 0.00102 0.01012 0.0166 0.0369 0.0141

X 0.0139 0.00135 0.01397 0.0326 0.0161 0.0156

Y 0.0137 0.00141 0.01457 0.0322 0.0167 0.0157

Z 0.0234 0.00345 0.01085 0.0447 0.0238 0.0212

AA 0.0318 0.00057 0.00597 0.0545 0.0171 0.0220

AB 0.0266 0.00057 0.00596 0.0634 0.0169 0.0227

AC 0.0320 0.00129 0.01277 0.0543 0.0135 0.0228

AD 0.0368 0.00177 0.01193 0.0531 0.0289 0.0265

AE 0.0448 0.00112 0.01355 0.0580 0.0160 0.0311

AF 0.0812 0.00359 0.00627 0.0697 0.0360 0.0394

AG 0.0626 0.00045 0.00646 0.1515 0.0339 0.0518

Two sorts of benchmarks:

1. MSEs based on exact X’s (lower 

bound)

2. MSEs based on unadjusted spline 

methods 

Method Dataset 
1

Dataset 
2 

Dataset 
3 

Dataset 
4 

Dataset 
5

Average

Bench-B 
X

0.0029 0.00160 0.00203 0.0034 0.0040 0.0028

Bench-P 
X

0.0035 0.00008 0.00280 0.0029 0.0035 0.0026

Bench-B 
X*

0.0124 0.00449 0.00594 0.0028 0.0311 0.0113

Bench-P 
X*

0.0101 0.00418 0.00850 0.0023 0.0314 0.0113



Simula琀椀ons

• Same 5 forms of Y-X rela琀椀onships: logit(P(Y=1|
X))=f(X)

• Main sample sizes: 30000, 15000, 5000, 2000

• Replica琀椀on substudy sample sizes: 250, 750

• Measurement error variances: 0.5*var(X), 
1.0*var(X) 

• Error distribu琀椀on: Normal, Gamma (shape 
parameter 3) adjusted to have mean 0

• All combina琀椀ons of above, except the Stage 1 
combina琀椀on, leading to 150 datasets

• Code 昀椀nalized a昀琀er Stage 1 used by Data 
Genera琀椀on and Evalua琀椀on Team to run on all 150 
datasets

• Added natural cubic splines.

• Each of the 150 datasets was simulated 10 
琀椀mes to provide repeat observa琀椀ons for 
calcula琀椀ng standard errors and con昀椀dence 
intervals.

• The 昀椀nal comprehensive analysis was based 
on a total of 1,500 dis琀椀nct datasets

Stage 2                                                          Stage 3                                                 

        



Selected results Stage 2: Graphs of J-shape
Multiple Imputation 

and Regression Calibration
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Selected results Stage 2: Graphs of Satura琀椀on
Multiple Imputation 

and Regression Calibration

Bayes SIMEX (pointwise)
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Selected results Stage 2: Graphs of Threshold2
Multiple Imputation 

and Regression Calibration

Bayes SIMEX (pointwise)
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Stage 2 Extension: MSE means over combina琀椀ons of smaller 

sample size scenarios
  Datasets 1 Datasets 2 Datasets 3 Datasets 4 Datasets 5 Mean

SIMEX-NS 0.0148 0.0083 0.0096 0.0098 0.0199 0.0125

SIMEX-PS 0.0196 0.0055 0.0084 0.0083 0.0229 0.0129

SIMEX-FP 0.0155 0.0083 0.0103 0.0098 0.0288 0.0145

SIMEX-BS 0.0309 0.0275 0.0165 0.0177 0.0346 0.0254

Bayes-NS logit 0.0570 0.0299 0.0192 0.0199 0.0430 0.0338

Bayes-PS logit 0.0580 0.0178 0.0174 0.0211 0.0583 0.0345

Bayes-FP logit 0.0549 0.0360 0.0261 0.0199 0.0522 0.0378

RC-PS 0.1441  0.0116 0.0119 0.0202 0.0276 0.0431

RC-NS 0.1347 0.0266 0.0166 0.0327 0.0266 0.0474

RC-FP 0.1733 0.0295 0.0170 0.0368 0.0314 0.0576

RC-BS 0.3035 0.1396 0.1163 0.1088 0.1000 0.1536

MI-NS 0.0811 0.0387 0.2173 0.3864 0.2115 0.1870

MI-PS 0.0767 0.0356 0.2486 0.7552 0.1589 0.2550

MI-FP 0.0768   0.0434 0.3831 0.9998 0.2126 0.3431

MI-BS 0.0797 0.0508 0.3438 4.0515 0.2191 0.9490

Bayes-BS logit 0.5421 0.4455 0.9507 0.8475 0.6738 0.6919



Main Results Phase 2

• SIMEX better than {MI, RC, Bayes}

• {P-Spline, FP, Natural spline} better than the B-Spline

• X-Y relationship: Linear > Threshold change-point below median > 

{Saturation, Threshold change-point above median} > J-shape

• Main study sample size: 30,000 > 15,000 > 5,000 > 2,000; but 
improvement was greatest between 2000 and 5000. 

• Replicate sub-study sample size: 750 > 250, as expected, but not 
equally for all methods 

• Measurement error magnitude: 0.5*Var(X) > 1.0*Var(X), as expected, 
but not equally for all methods



Selected results Stage 3: logMSE



Key 昀椀ndings

• Surprising Results: Our blinded study challenged conven琀椀onal wisdom, revealing an 
unexpected performance hierarchy among methods. We suspect that SIMEX might be 
more robust in complex models. 

• Value of Neutral Comparison: This work highlights that blinded, unbiased studies are 
crucial for rigorously evalua琀椀ng sta琀椀s琀椀cal methods, much like clinical trials in medicine. 

• Top Performer: SIMEX consistently proved to be the most accurate and robust method 
across most scenarios.

• Observed Hierarchy: The general performance ranking was:

 SIMEX > Bayes (with FP/NS) > MI / RC.

• A Key Cau琀椀on: The Bayesian approach, when combined with B-splines, performed 
poorly and should be used with cau琀椀on in this context.

• Take-Home Message: Adjus琀椀ng for measurement error is cri琀椀cal. The choice of method 
has a profound impact, and this study provides some evidence to guide researchers, s琀椀ll 
further work is needed… Two papers to be made public out of this work…
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Thank you & key publications

1. Investigation and comparison of properties of variable 

selection strategies

2. Comparison of spline procedures in univariable & 

multivariable contexts

3. How to model one or more variables with a ‚spike-at-zero‘?

4. Comparison of multivariable procedures for model and 

function selection

5. Role of shrinkage to correct for bias introduced by data-

dependent modelling

6. Evaluation of new approaches for post-selection inference

7. Adaptation of procedures for very large sample sizes 

needed?


	Slide 1
	Slide 2
	Outline
	A joint project between TG2 and TG4
	Aim of the joint project
	Available methods
	Research objectives
	Slide 8
	Data Generation and Evaluation Team (Anne Thiebaut, Laurence Fr
	Imputation methods (Victor Kipnis, Douglas Midthune, Kevin Dodd
	Bayesian Method (Paul Gustafson, Raymond Carroll, Frank Harrell
	Simulation-Extrapolation (SIMEX) (Michal Abrahamowicz and Steve
	Slide 13
	Blinded results from Stage 1 & Benchmarks
	Simulations
	Selected results Stage 2: Graphs of J-shape
	Selected results Stage 2: Graphs of Saturation
	Selected results Stage 2: Graphs of Threshold2
	Slide 19
	Main Results Phase 2
	Selected results Stage 3: logMSE
	Key findings
	Thank you & key publications

