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Abstract 

The number of prediction models proposed in the biomedical literature has been growing year on year. In the last 
few years there has been an increasing attention to the changes occurring in the prediction modeling landscape. It 
is suggested that machine learning techniques are becoming more popular to develop prediction models to exploit 
complex data structures, higher-dimensional predictor spaces, very large number of participants, heterogeneous sub-
groups, with the ability to capture higher-order interactions. We examine the changes in modelling practices by inves-
tigating a selection of systematic reviews on prediction models published in the biomedical literature. We selected 
systematic reviews published between 2020 and 2022 which included at least 50 prediction models. Information 
was extracted guided by the CHARMS checklist. Time trends were explored using the models published since 2005. 
We identified 8 reviews, which included 1448 prediction models published in 887 papers. The average number 
of study participants and outcome events increased considerably between 2015 and 2019 but remained stable 
afterwards. The number of candidate and final predictors did not noticeably increase over the study period, with a few 
recent studies using very large numbers of predictors. Internal validation and reporting of discrimination measures 
became more common, but assessing calibration and carrying out external validation were less common. Informa-
tion about missing values was not reported in about half of the papers, however the use of imputation methods 
increased. There was no sign of an increase in using of machine learning methods. Overall, most of the findings were 
heterogeneous across reviews. Our findings indicate that changes in the prediction modeling landscape in biomedi-
cine are smaller than expected and that poor reporting is still common; adherence to well established best practice 
recommendations from the traditional biostatistics literature is still needed. For machine learning best practice recom-
mendations are still missing, whereas such recommendations are available in the traditional biostatistics literature, 
but adherence is still inadequate.
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Introduction
Models that provide predictions are an important tool in 
diagnosis, prognosis and treatment selection for human 
diseases. Clinical prediction models estimate an indi-
vidual’s risk of a specific health outcome, using known 
characteristics, typically demographic and medical infor-
mation. The interest in prediction models in medicine 
is growing: in 2023, for example, about one of 25 papers 
indexed in PubMed could be retrieved searching for “pre-
dictive model” or “prediction model”, a number that is 
more than 2 times larger compared to twenty years ear-
lier (https://​esperr.​github.​io/​pubmed-​by-​year/).

Despite the increase in prediction model studies, few of 
the developed models are implemented in clinical prac-
tice [1, 2]. Contibuting to the poor uptake is likely the 
poor adherence to methodological recommendations in 
the development of the models [1, 3, 4], which was also 
the main finding of the review of prediction models pub-
lished in high-impact journals in 2008 [5]. Editorials and 
review papers relate the poor applicability to the increase 
in the number of publications that use large datasets 
(often derived from routinely collected data) and the 
widespread use of machine learning (ML) methods [6–
15]. ML methods can be particularly complex and thus 
more prone to overfitting and are rarely validated using 
independent data [7]; often described as lacking trans-
parency compared to predictions based on regression 
approaches [7], using limited subject matter expertise 
and providing models where the contribution of differ-
ent predictors is difficult to interpret [6]. Particular types 
of large datasets are often described as commonly lack-
ing sufficient quality and detail to answer clinically rel-
evant questions or guide decision making [16]; the need 
to address many methodological issues before potentially 
useful prediction models can be developed using big data 
or routinely collected data has been stressed; these meth-
odological issues include heterogeneity between popu-
lations, changes over time, differences across centers, 
under-representation of populations, missing data, lack 
of structure, inaccuracies, lack of calibration and insuffi-
cient data sharing [10, 11, 14].

Because of the changes in the type and availability of 
data and type of analysis strategies being used, many sug-
gestions from the literature indicate that the existing best 
practice recommendations for design, conduct, analysis, 
reporting, impact assessment, and clinical implementa-
tion from the biostatistics and medical statistics literature 
are no longer sufficient alone to guide the use of predic-
tion models when machine learning methods are being 
used [6, 10, 17–21]. Consequently, many initiatives have 
been launched to propose new guidelines for the devel-
opment, reporting and critical appraisal of prediction 
models based on machine learning/artificial intelligence 

(ML/AI) methods [10]; these include the TRIPOD (for 
model development/validation), CONSORT (trials of AI 
interventions), SPIRIT (protocols of trials of AI interven-
tions), and PROBAST (risk of bias assessment) guidelines 
and tool for ML/AI that were updated or are in develop-
ment [19, 22–25].

The aim of this paper is to explore if and how the pre-
diction modelling landscape is changing. We focus on 
prognostic models that have been developed for the 
prediction of a future health outcome event based on a 
model that uses multiple predictors [26].

Systematic reviews are a valuable tool for obtaining 
information about existing prognostic models, sum-
marizing their predictive performance and quality, and 
information about the predictors used [27]. The num-
ber of systematic reviews on prognostic models in the 
biomedical literature in the last years raised at a pace 
comparable to the increase observed in the number of 
publications that develop or apply prognostic models. 
Systematic reviews are often focused on specific out-
comes and target populations, including relatively few 
prediction models. In exceptional cases, such as the 
recent review on prediction models for diagnosis and 
prognosis of COVID-19 [4], the findings from hundreds 
of prediction models are described.

We explored whether the landscape of prediction 
model studies is changing by reviewing systematic 
reviews of prognostic models. We focused on 8 reviews 
published (or updated) in 2020-22 and examined in detail 
the characteristics of the prognostic models included 
in the eligible [27]; the characteristics include (but are 
not limited to) the number of study participants, num-
ber of candidate and final predictors, type and number 
of prediction models and measures that quantify the 
performance of the models. We focused only on model 
development and omitted models where only the results 
from an external validation of an existing model, without 
model development, are reported.

In the Methods section we explain how the reviews 
were selected and describe their characteristics in detail. 
In the Results section we summarize the findings, focus-
ing on exploring any time trends, and conclude with the 
Discussion section.

Methods
Selection of the reviews
The initial search of systematic reviews was based on a 
manually curated list made publicly available by Gary 
Collins (https://​twitt​er.​com/​GSCol​lins/​status/​15062​49323​
18043​7507). The list included about 260 systematic 
reviews of prediction models published in various medi-
cal fields; the number of reviewed models ranged from 
3 to 1382, 52 systematic reviews reviewed more than 50 

https://esperr.github.io/pubmed-by-year/
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models, about a half included fewer than 20 models. The 
reviews were published between 2004 and 2022, most of 
them in the 2010-2020 period.

We examined the list of the 260 reviews and screened 
the content of the 19 systematic reviews that were 
reported to include at least 50 models and were pub-
lished in 2020-22. We excluded the reviews

•	 that could not be retrieved as full text (1 systematic 
review)

•	 for which the individual per paper/per model data 
were not available (or at least not as a table, 6 system-
atic reviews)

•	 that described less than 30 papers where prognos-
tic models were developed (6 systematic reviews, 1 
included only validation of models).

which led to 6 eligible systematic reviews.
In November 2022 we performed a search in Pubmed, 

screening the results of a PubMed search for systematic 
reviews of prognostic models published in 2020-22 (using 
the"prognostic model(s)/prediction model(s)"keywords) 
and identified two additional systematic reviews that 
were eligible for inclusion. External validation only stud-
ies were excluded from our analyses. Thus, in total 8 
reviews paper (6 from the manually curated list, 2 from 
additional searching) were included in our review of the 
reviews. The selection process is displayed in Fig. 1.

The main characteristics of the reviews were sum-
marized using the PICOTS system [28] (Population, 
Index model, Comparator model, Outcome(s), Timing, 

Settings), where we omitted the comparator model and 
reported only the timing related to the moment in time 
when the models are to be used in clinical practice.

We summarized the number of papers/models that 
were analyzed in each review, the time range of publica-
tion of the papers that they included and what type of 
information was available for each review.

For each paper/model we extracted information follow-
ing the CHARMS checklist [29], including the number of 
study participants, the type of outcomes being predicted, 
the (candidate) predictors, analytical details (e.g., type 
of model, handling of missing data, selection of predic-
tors), and evaluation of the model performance (discrim-
ination, calibration, classification). The complete list of 
extracted data is available in the Supplementary table 1.

Data management
We organized the raw extracted data from each review 
in one table. Data were then processed manually and 
harmonized, where applicable, summarizing them to 
the categories considered later in the analysis. Only the 
information provided in the reviews was considered and 
we did not check and re-extract the original papers.

Some papers included in the reviews described more 
than one model. Our analyses were performed on a ‘per-
paper’ basis, if not otherwise noted; this was done to 
avoid giving excessive weight to the papers that devel-
oped many different prediction models. Numerical data 
from different models described in the same paper were 
summarized using mean values (omitting missing val-
ues). A method or measure was considered as having 

Fig. 1  Flowchart displaying the process for selecting the reviews
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been used/reported in the paper if it was used/reported 
for at least one of the models described in the paper. For 
the type of prediction models, in a first step, we assigned 
the described methods to one of the following classes: 
‘Neural network’, ‘Random Forest’, ‘Other tree-based’, 
‘SVM’ (Support vector machine), ‘Boosting’, and ‘Other 
(ML)’, ‘(Penalized) Logistic Regression’, ‘Linear Regres-
sion’, ‘Cox Regression’, ‘Other (Stats)’; the categories‘NA/
Not reported/Unclear’ and ‘Other‘ (not clear if statisti-
cal or ML) were also used. The class ‘Tree-based’ refers 
to single trees only, not to random forests, tree-based 
boosting approaches or any other ensemble methods. 
The list of terms found in the reviews to describe Neural 
networks is available in Supplementary file 1.

In the review from Li [30], where the information was 
given only on a per-paper basis, a list of used prediction 
methods was provided. These were classified as ‘Multiple 
(ML)’ or ‘Multiple (Both)’, as appropriate; statistical mod-
els were never used exclusively in this review.

Also for the other reviews, we defined for each paper 
if the models were developed using exclusively statisti-
cal methods (‘(Penalized) Logistic Regression’, ‘Linear 
Regression’, ‘Cox Regression’, ‘Other (Stats)’), exclusively 
ML methods (‘Neural net’, ‘Random Forest’, ‘Tree-based’, 
‘SVM’ (Support vector machine), ‘Boosting’, and ‘Other 
(ML)’), or both, or if the information was unclear (‘NA/
Not reported/Unclear’ and ‘Other).

The measures that quantify the predictive performance 
for internal validation were grouped into the three cat-
egories ‘Discrimination’, ‘Calibration’, and ‘Classification’ 
(as suggested in the CHARMS checklist [29]).

The area under the receiver-operator characteristic 
curve (AUC or AUROC, sometimes also just denoted 
as ROC) and the C-index (sometimes C-statistic) were 
considered to be measures for discrimination. Calibra-
tion plots (i.e. observed vs expected risks) and calibra-
tion slopes, calibration in-the-large, Hosmer-Lemeshow 
tests, Greenwood-D’Agostino-Nam tests, and Gronnesby 
and Borgan tests were all categorized as ‘Calibration’ 
measures. Finally, the group of ‘Classification’ measures 
entailed Accuracy, Sensitivity (or Recall), Specificity, Pos-
itive Predictive Value (or Precision), Negative Predictive 
Value, F 1-score, Youden-index, Positive Likelihood Ratio, 
Negative Likelihood Ratio, and the Diagnostic Odds 
Ratio.

Internal validation methods were grouped in catego-
ries: cross-validation, bootstrap (including resampling or 
jacknife), split-sample (random, temporal or other), other 
(not specified or combinations), or missing information 
(NA); external validation methods were not further cat-
egorized, as the information was very limited.

The handling of missing values was evaluated at per-
model level and categorized as: predictor omission, 

missing indicator methods/Dummy, Complete Case, Sin-
gle imputation, Multiple imputation, Other imputation, 
Unclear/No information, Other, No Need To Report/
None.

Presentation of the results
We summarized the characteristics of the papers/mod-
els that were reviewed, overall and stratified by system-
atic review, in order to account for heterogeneity of the 
reviews into account.

Several graphical displays were used. Overall time 
trends were displayed using scatterplots with an added 
smoothing line obtained with a loess smoother with 
95% confidence bands (using the default settings of the 
geom_smooth() function from the ggplot2 R pack-
age). Summaries of numerical variables were displayed 
with a combination of violin plots and boxplots, to dis-
play the summary statistics and the overall distribution 
of the data. Scatterplots were used to compare the num-
ber of candidate and of final predictors, where the sizes 
of the individual dots reflected the respective underlying 
frequency. Categorical variables were summarized by 
stacked barplots (with absolute and relative numbers). 
The occurrence of the different types of measures was 
displayed using Sankey plots.

In tables the numerical variables were summarized 
using median (med), arithmetic mean (mean), the inter-
val between minimum and maximum (range), and 
interquartile range (IQR). Categorical variables were 
summarized using frequencies and percentages.

All analyses were conducted in the statistical program-
ming software R, version 4.2.2 [31]. For the display of the 
results, the R packages ggplot2 [32], ggalluvial 
[33], ggpubr [34], and ggh4x [35] were used.

Initial data analysis
Decisions about how to present data were based on ini-
tial data analysis (IDA), where the distributions of the 
variables were explored using descriptive statistics [36].

IDA indicated the exclusion of papers published before 
2005, due to their small number (n=27). To explore the 
time trends in some analyses we grouped the year of 
model publication into intervals with the following inter-
vals 2005-2009, 2010-2014, 2015-2019 and 2020-2021. 
IDA also indicated the removal of the review of Wynants 
et al. on COVID-19 [4] from the time trend analysis, as 
this review contains 75% of the papers included in our 
review in the 2020/21 period and it would have domi-
nated the results in the 2020/21 period. The results of the 
Wynants review [4] were therefore included in the overall 
analyses and commented on separately in the time trend 
analyses.
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Some information about the type of the outcome 
(binary, categorical, time to event, numerical) is available 
indirectly, by examining the type of models used; how-
ever, in most reviews the information was not reported 
explicitly. For this reason we did not exclude numerical 
outcomes from the analysis of the number of outcome 
events. We decided not to analyze the time trends of the 
number of outcome events per predictor, as the informa-
tion was very sparse and dominated by the information 
provided in Wynants [4].

We decided not to analyze data on clinical utility of 
the prognostic modes, as this information was rarely 
reported in the reviews.

Results
Here we describe the main characteristics of the reviews 
and the characteristics that were selected for our analy-
ses, analyzing complete data, stratifying the results per 
review, and summarizing the time trends.

The TRIPOD (Transparent Reporting of a multivariable 
prediction model for Individual Prognosis Or Diagnosis) 
statement gives a set of recommendations for the report-
ing of studies involving the development or validation of 
a prediction model [22]. This statement is referenced in 
broad terms in three reviews (Wynants [4], Ogink [37], 
He [38]), and not considered at all in two reviews (Ndja-
boue [39], Sun [40]). For the remaining three reviews 
(Li [30], Haller [41], Gade [42]), the information about 
adherence to the TRIPOD statement is given on an over-
all basis in Li [30] and Haller [41], and for each paper 
individually in Gade [42].

Main characteristics of the reviews
We included 8 systematic reviews that described the pre-
diction models in different medical fields (COVID-19 
by Wynants et  al. [4], vascular surgery by Li et  al. [30], 
heart failure by Sun et  al. [40], diabetes by Ndjaboune 
et al. [39], orthopaedics by Ogink et al. [37], cervical can-
cer by He et al. [38], organ transplantation by Haller et al. 
[41], falls by Gade et al. [42]); the PICOTS elements are 
described in Table  1. Five reviews (Wynants [4], Ndja-
boue [39], Haller [41], He [38], Gade [42]) considered all 
available prognostic models up to the time of search, two 
studies focused on machine learning based prediction 
models (selecting studies that included at least one ML-
based prediction, Ogink [37] and Li [30]), and one study 
considered models published in the previous ten years 
(Sun [40]). Only one review considered the study design 
as an inclusion criteria (Gade [42], including only pro-
spective cohort studies); the study design was reported in 
two additional reviews: Haller [41] reported only cohort 
studies, observational studies were the majority for 
Wynants [4], which included also some registry studies.

The raw information was provided at per-paper level 
only in one review (Li [30]), and per-model in the other 
reviews. In the Wynants review [4] 116/501 models used 
some type of imaging techniques (mostly CT scans or 
X-ray), and one review (Li [30]) included also prediction 
models for image segmentation (55/215 papers, which 
were included in the analyses as there was no indication 
that the aim of the analysis was not prognostic).

Some information was systematically missing for 
some reviews, and there were missing values also when 
the information was intended to be summarized in the 
review, indicating that some of the reviewed papers did 
not provide all the information (Supplementary file 1). 
For example, the number of outcome events or the num-
ber of candidate predictors was often missing, making 
the analysis of the number of outcome events per variable 
problematic. Information for both number of outcome 
events and number of candidate predictors was available 
for only three reviews, which all also directly provided 
the number of event per variable, however with many 
missing values. The heterogeneity across reviews is fur-
ther addressed in Overall results and time trends section.

We identified and excluded 363 models that were 
included in the reviews only for validation purposes and 
51 papers that were published before 2005 (published 
during 1987-2004). Overall, in our analyses we consid-
ered 887 papers and 1448 models from the 8 systematic 
reviews; the number of papers included in each review 
ranged from 28 to 368, the number of models from 49 to 
501 (Table 2). There were not any duplicate papers across 
reviews.

Overall results and time trends
In this section we report the overall results (based on all 
included papers), describe time trends and summarize 
separately the papers included in the Wynants (COVID-
19) paper. The descriptive statistics are also stratified by 
review. Unless otherwise noted, the summaries are given 
at per-paper level.

The number of papers included in the systematic 
reviews was larger in the more recent years (Table 3 and 
Supplementary file 1 for additional information by 
review). The papers published in 2020/21 represented 
the majority of the papers (40% were from the Wynants 
review and 14% from the other reviews), while the 
2005/09 period was the least represented with 46 papers 
(5%). The increase in the number of papers was consist-
ent across reviews (Supplementary file 1).

Number of study participants
The number of study participants was reported 
in 7 reviews (88% of papers). The overall distribu-
tion of the number of study participants (all reviews 
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considered jointly) was strongly right-skewed (med=395, 
mean=17511); the number was above 200,000 in 10 
papers/models, all of which were published in 2019 or 
later. The number of study participants included in the 
papers/models varied: the median values ranged from 
200 (Li [30]) to 5460 (Ogink [37]) (Supplementary file 1 
for additional overall and per review summaries).

Overall, the number of study participants increased 
over time as did the percentage of papers/models for 
which the information was available from the reviews 
(complete data were used in Fig.  2, years were grouped 
in Fig.  3 in Supplementary file 1). In the Wynants [4] 
review the number of study participants was considera-
bly smaller compared to the papers included in the other 
reviews and published over the same period (2020/21) 
(med: 365 vs 660, Supplementary file 1).

Number of outcome events
The number of outcome events was reported in 6 reviews 
(62% of all papers); missing number of outcome events 
were for the reviews that, in principle, reported the infor-
mation (Fig.  3 and Supplementary file 1) and they were 
present for all types of outcomes. For example, the num-
ber of outcome events was missing for 47/326 models 
that used (penalized) logistic regression and for 50/180 
for models that used Cox regression. The distribution of 
the number of outcome events was strongly right-skewed 
(med=89, mean=822, range: 5 to 74661), with consider-
able variability across reviews (from med=53 in Haller 
[41] to med=298 in Sun [40], Fig. 3 and Supplementary 
file 1).

The number of outcome events increased over time 
(summaries in Figs.  2 and 3 and in Supplementary file 

Table 2  Overall numbers of models and papers included and excluded from the analyses, by review

Included Excluded

Review Field Time Models Papers Pure validation 
models

Papers 
published 
before 2005

Wynants COVID-19 2020 to 2022 501 368 230 0

Li Vascular Surgery 1991 to 2021 - 202 0 10

Sun Heart Failure 2011 to 2021 176 78 104 0

Ndjaboue Diabetes 2000 to 2020 175 75 0 5

Ogink Orthopaedic 1996 to 2020 218 56 0 16

He Cervical cancer 1987 to 2020 74 52 27 3

Haller Organ Transplantation 2004 to 2021 48 35 0 1

Gade Falls 1994 to 2019 54 21 2 16

Table 3  Summary statistics by time of publication and by review

Number and percentage of papers where the model characteristic was reported. 2020/21*: Note that the papers summarized for the 2020/21 period do not include 
those from the Wynants review

Internal validation External validation Discrimination Classification Calibration

Overall 575/887 (65%) 170/831 (20%) 563/887 (63%) 285/647 (44%) 221/831 (27%)

Time of publication

 2005/09 21/46 (46%) 8/46 (17%) 20/46 (43%) 20/25 (80%) 12/46 (26%)

 2010/14 82/148 (55%) 27/141 (19%) 98/148 (66%) 47/72 (65%) 47/141 (33%)

 2015/19 142/200 (71%) 26/167 (16%) 149/200 (74%) 62/100 (62%) 50/167 (30%)

 2020/21* 82/125 (66%) 14/109 (13%) 87/125 (70%) 42/82 (51%) 30/109 (28%)

Review

 Wynants 248/368 (67%) 95/368 (26%) 209/368 (57%) 114/368 (31%) 82/368 (22%)

 Li 105/202 (52%) 7/202 (3%) 71/202 (35%) 133/202 (66%) 4/202 (2%)

 Sun 65/78 (83%) 10/78 (13%) 78/78 (100%) - 35/78 (45%)

 Ndjaboue 55/75 (73%) 40/75 (53%) 72/75 (96%) - 57/75 (76%)

 Ogink 47/56 (84%) - 55/56 (98%) 25/56 (45%) -

 He 36/52 (69%) 12/52 (23%) 47/52 (90%) - 34/52 (65%)

 Haller 12/35 (34%) 5/35 (14%) 18/35 (51%) - 7/35 (20%)

 Gade 7/21 (33%) 1/21 (5%) 13/21 (62%) 13/21 (62%) 2/21 (10%)
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1). Within the reviews of Li [30] and Sun [40], where 
the largest number of models developed in different 
years were included, the increase during the 2010 s was 
noticeable (Fig.  3). Similarly as for the number of study 

participants, very large numbers of events were used 
mostly in models that were published more recently (out 
of the 9 papers that reported more than 10,000 events, 
one was published each in 2012, 2017, and 2019, and 6 

Fig. 2  Time trends for number of study participants, events, candidate predictors, final predictors and models. The data from Wynants were 
not included. Each dot represents one paper; the blue trend lines represent the overall associations and are obtained using a loess smoother; 
the gray ribbons are 95% confidence bands
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in 2020). The Wynants review [4] described papers with 
fewer events compared to the other papers from the same 
period, and reported the information more frequently 
than the other reviews.

Number of predictor variables (candidate and final)
The number of candidate predictors was available in 4 
reviews (38% of papers) and the number of final predic-
tors (i.e., those in the final model) in 5 reviews (65% of 
papers); one review provided only the number of can-
didate predictors (Gade [42]) and two only the number 
of final predictors. Among the reviews that collected 
information on the number of predictors, the informa-
tion about candidate predictors was often missing, while 
the number of final predictors was reported most of the 
times (Supplementary file 1).

The overall median number of candidate predictors 
was 25 (mean=84, IQR = 14 to 40), the median number 

of final predictors was 6 (mean=21, IQR = 4 to 11); the 
distribution of the number of candidate predictors was 
strongly right-skewed, with mean values much larger 
than medians in the most recent papers. Over time the 
number of candidate predictors remained rather stable; it 
increased only in one review (Ndjaboue [39]).

The mean number of final predictors increased over 
time but the median values remained rather stable, two 
reviews showed a marked increase (Ndjaboue [39] and 
Sun [40]); most studies with very large number of pre-
dictors appeared after 2015 (Fig. 3 and Supplementary 
file 1). The papers included in the Wynants review [4] 
used fewer predictors compared to the papers from 
the other reviews analysed in this work and published 
in the same period (2020/21) (med: 4 vs 8, mean: 11 vs 
25), in the other reviews the information on candidate 
predictors in the 2020/21 papers was too scarce (n=7) 
to make meaningful comparisons. For the Wynants 

Fig. 3  Descriptive characteristics by review and grouped by the intervals for year of publication. The variables are displayed using box and whisker 
plots with super-imposed violin plots. The box and whisker plots show the median and interquartile range of the variables, its range, and can be 
used to identify observations that are far from the centre of the data (distant by more than 1.5 times the interquartile range from the first or third 
quartile). The violin plots depict the density curves of the distributions, the width of each curve corresponds with the approximate frequency 
of data points in each region. The numbers at the bottom of the graphs indicate the number of models included in the analysis. The displayed 
variables are: number of models (NrModels), number of study participants (NrPart, log2 scale), number of outcome events (NrEvents, log2 scale), 
number of candidate predictors (NrCandPred), and number of final predictors (NrFinPred). Results are shown with individual x-axes. Some values 
were omitted from this plot to better visualize the relevant areas: for NrCandPred, a value of 3463 for Ndjaboue, year 2015/19, and a value of 15000 
for Wynants were not shown. For NrUsedPred, a value of 3512 for Sun, year 2015/19, a value of 1302 for Sun, year 2020/21, and a value of 483.3 
for Wynants were not shown
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review [4] we compared the number of candidate and 
final predictors in models that used imaging with the 
other models, and observed that the number of candi-
date predictors was larger in models with imaging data 
(med: 112 vs 34, mean: 80 vs 46) while the number of 
final predictors was smaller (med: 4 vs 7, mean: 15 vs 
23).

A subset of studies used all available predictors, but 
generally the number of final predictors was greatly 
reduced by some type of predictor selection (Supple-
mentary file 1).

Information about the methods for predictor selec-
tion before or during modelling was not collected in 
all the reviews, and even for the reviews that collected 
this information, there were a lot of missing values. 
Regarding the pre-selection of predictors, out of the 
586 models for which this information was in principle 
reported, selection based on univariate analyses was 
observed most frequently (192 models), followed by 
the use of all predictors (176 models) and a knowledge-
based approach (32 models). The information about 
model selection during the model building was avail-
able even less often, with 159 models that used a step-
wise approach, 84 times all variables were forced into 
the model (‘full-model approach’) and 41 models used 
a LASSO approach. Other methods were reported only 
for very few models.

Number of models per paper
Seven reviews reported the number of models developed 
in each paper (77% of papers). Most papers presented the 
findings from one model (med=1, mean=1.8, IQR: 1 to 2, 
range: 1 to 28); one review included papers that reported 
considerably more models than the others (med=4, IQR: 
2 to 5, Ogink [37]), the variability was larger in the most 
recent papers (Fig. 3 and Supplementary file 1).

Missing values
Five reviews collected information on missing values; 
in 54% of the papers no information about how missing 
data were handled was reported (Fig.  4). Further, the 
quality of reporting did not increase over time. Com-
plete case analysis was still the most common method, 
but the use of imputation methods became more fre-
quent in recent years (mostly reported in Haller [41] 
and Sun [40], while complete case analyses were prev-
alent also in recent years in He [38] and Gade [42]). 
The review of Wynants [4] showed very similar results 
as observed in the papers from the other reviews ana-
lysed in this work and published in the same period 
(2020/21).

Measures of predictive performance for internally validate 
models
One review (Ogink et al. [37]) did not collect information 
on model calibration, and four did not report classifica-
tion measures (Haller [41], He [38], Ndjaboue [39], Sun 

Fig. 4  Methods used for handling missing data. The information was summarized on a per-model level using four reviews for which 
the information was available, with overall (without Wynants) and stratified frequencies across reviews
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[40]) (Table  3 and Fig.  5), whereas discrimination was 
reported in all 8 reviews.

Discrimination was reported for 63% of the papers, 
classification measures for 44%, calibration for 27%. 
Reporting of all three types of measures was rare (the co-
occurrence of different measures is reported in the Sup-
plementary file 1).

Reporting of discrimination improved over time (43% 
in 2005/09 period, 70% in 2020/21), but the reporting for 
classification and calibration did not (Table 3). There was 
considerable heterogeneity across reviews; for example, 
reporting of discrimination ranged from 35% (Li, [30]) to 
100% (Sun, [40]), classification from 31% (Wynants [4]) 
to 62% (Gade [42]), and calibration from 2% (Li, [30]) to 
76% (Ndjaboue, [39]) (Table 3 and Fig. 5). In the Wynants 
review [4], the measures were reported less frequently 
compared to the papers from the other reviews analysed 
in this work and published in the same period (2020/21) 
(Table 3).

Internal validation
All reviews collected information on internal valida-
tion of the included models. Overall, internal validation 
was performed in 575/887 (65%) of the papers. Findings 
varied across the reviews (Table  3), ranging from 33% 
in Gade [42] to 84% in Ogink [37]. Overall and in most 
reviews the reporting of internal validation increased 
with time (Fig. 6). How internal validation was performed 
varied widely across reviews: the most commonly used 
methods for internal validation were cross-validation 
(very few other methods were observed in the reviews of 
Li and Ogink), bootstrap (which was common in He [38]) 

and split-sample methods, which are not recommended 
(or efficient) for regression based approaches [43], and 
were less common in the most recent periods and com-
monly used only in few reviews.

Generally, using bootstrap to evaluate prediction 
performance is not recommended due to the overlap 
between training and test data. However, methods such 
as OOB (out-of-bag) could be viable.

External validation
One review did not collect information on external vali-
dation (Ogink [37]). Overall, external validation was 
reported for 170/887 (20%) of the papers. Reporting of 
external validation did not increase markedly with time 
(Fig.  7, Table  3). The Wynants review had higher levels 
of external validation compared to the papers from the 
other reviews analysed in this work and published in the 
same period (2020/21) (26% vs 13% of papers).

Reviews were heterogeneous also in terms of exter-
nal validation, ranging from 5% of Gade [42] to 53% of 
Ndjaboue [39], in which the percentage was expected to 
be large due to the inclusion criteria used in that review, 
which included models with reported evidence of inter-
nal and/or external validation.

Type of prediction model
All reviews collected information on the modelling 
approach to develop the prediction models. Overall, 
51% of the papers used exclusively statistical approaches 
(e.g., regression based), 31% exclusively ML methods, 
11% used both, and the information was unclear for 7% 
of the papers (Fig. 8). Overall (excluding the Wynants [4] 

Fig. 5  Summary of the reported measures. The display is stratified by review and time of publication and is given on a per-model level. The 
abbreviation ‘NRR’ stands for ‘not reported by the review’
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review), Cox regression was used in 21.6% of the mod-
els, (penalized) logistic regression in 16.5%, linear regres-
sion in 1.9%, neural networks in 17.9%, random forests 
in 5.9%, tree-based methods in 4.0%, SVM in 5.3%, and 
boosting in 4.5%. One review (He [38]) reported an 
almost exclusive use of the Cox model (Fig. 9), which was 
common also in Ndjaboue [39]. We did not retrieve the 
use of penalized Cox regression or of Cox regression with 
boosting.

The results across reviews were inconsistent with 
no clear time trends (Figs.  8 and  9, Table  4). Two 
reviews required the use of (at least one) ML method 
as an inclusion criterion for the selection of the papers 
(Ogink and Li, [30, 37]). In these two reviews the statis-
tical methods were most rarely used exclusively (14 and 
28%, respectively); nevertheless, the use of both ML 
and statistical methods was common in both reviews, 
especially in Ogink [37] (Fig.  8). Two other reviews 

Fig. 6  Top: Proportion of models that reported performing internal validation grouped by year of publication. Overall (left), by review (middle) 
and for Wynants (right). Bottom: Methods used for internal validation, grouped by year of publication; frequencies. The analysis was restricted 
to the models for which using internal validation was reported. Overall (left), by review (middle) and for Wynants (right)
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identified many papers that used exclusively ML meth-
ods (24% in Wynants [4] and 29% in Gade [42]), which 
was rare in the other four reviews.

One review indicated an increase in the use of both 
types of methods with time (Sun [40]), another an 

increase of the use of (penalized) logistic regression, 
but other clear time trends were not noticeable, both 
within individual reviews and overall. The large(r) 
percentage of ML methods observed in the 2020/21 
period (39% vs 28% in the the 2015-20 period) seems 

Fig. 7  Proportion of models with reported external validation. The information is shown across all six reviews (left), stratified by review (middle), 
and for the Wynants review (right)

Fig. 8  Categorized type of prediction model when counting purely per paper. This means, for each paper, the different models are considered 
and it is checked whether models corresponding to ‘Statistical Methods’ only, ‘Machine Learning’ methods only, or both are used
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attributable to the large influence of the data from the 
Li [30] review rather than to an overall increase, which 
is not observed within reviews. Moreover, the statisti-
cal methods were used more commonly in the Wynants 
review [4] than in the papers from the other reviews 
analysed in this work and published in the same period 
(2020/21) (50% vs 40%) (Fig. 10).

Comparisons by type of model  Papers that used exclu-
sively statistical models used larger datasets and fewer 
candidate predictors compared to papers that used 
exclusively ML methods, which presented higher right-
skewness in the distribution of the numerical variables 
(Table 5).

The reporting of the measures varied widely by type 
of model, measures of discrimination and calibration 
were reported much more frequently when statistical 
models were used (Table 6), as were the number of can-
didate and final predictors (Table 5).

Fig. 9  Different types of prediction models. The information is summarized across all reviews (left) and stratified by review (right), with frequencies. 
Counting was performed in a ‘per paper’ way, i.e. if, e.g., for one paper, three tree-based methods and 10 SVMs were reported, both would be 
counted only once

Table 4  Number (percentage) of papers that used models that 
were statistical/ML/of both types/type was unclear, stratified by 
time of publication of the models and review

2020/21*: note that the papers reported in the 2020/21 period do not include 
those from the Wynants review. a: reviews with inclusion criteria related to the 
use of ML methods

n Statistical ML Both Unclear

Overall 887 449(51%) 277(31%) 99(11%) 62(7%)

Time of publication

  2005/09 46 21(46%) 17(37%) 4(9%) 4(9%)

  2010/14 148 89(60%) 36(24%) 19(13%) 4(3%)

  2015/19 200 105(52%) 55(28%) 34(17%) 6(3%)

  2020/21* 125 50(40%) 49(39%) 21(17%) 5(4%)

Review

  Wynants 368 184(50%) 120(33%) 21(6%) 43(12%)

  Lia 202 49(24%) 120(59%) 26(13%) 7(3%)

  Sun 78 57(73%) 7(9%) 14(18%) 0(0%)

  Ndjaboue 75 62(83%) 2(3%) 3(4%) 8(11%)

  Oginka 56 8(14%) 16(29%) 30(54%) 2(4%)

  He 52 42(81%) 6(12%) 3(6%) 1(2%)

  Haller 35 33(94%) 0(0%) 1(3%) 1(3%)

  Gade 21 14(67%) 6(29%) 1(5%) 0(0%)
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Discussion
The aim of this paper was to investigate any changes in 
prognostic model studies in the recent years. We used 
systematic reviews of prognostic models to evaluate if 
some important aspects in the development and report-
ing of models have changed considerably over time.

Our study was based on the findings of 8 systematic 
reviews, selected among those published in 2020-22 
that reviewed more than 30 papers reporting develop-
ment prognostic models, and provided sufficient publicly 
available information for the re-analysis of most of the 
information guided by the CHARMS checklist. We re-
analyzed the findings from 887 papers and 1448 models.

The findings from our study, based on these 8 reviews, 
show that the changes in prediction modeling are not as 
substantial as it might have been anticipated. Some of 
the key findings of our paper are: models did not become 
substantially bigger over time (with respect to the num-
ber of variables); within each review we did not observe 
an increase of the use of ML methods over time; dis-
crimination assessments are still much more popular 
than calibration assessments; there is an indication of a 
trend towards increasingly following guidelines (e.g. with 
respect to performing/reporting internal validation, and 
using resampling methods instead of sample splitting).

We observed that the number of study participants 
(and outcome events) increased in time, the substantial 
increase in the 2015/19 period was followed in 2020/21 
by a further increase, due to the presence of extremely 
large studies (e.g., using registry studies), but the cen-
tral tendency (median) remained unchanged, indicating 
that only few studies contribute to the average changes. 

Fig. 10  Types of prediction models for the Wynants review only. The plot on the left shows the individual methods, counted as explained for Fig. 9. 
In the middle, these are summarized into the indicated categories. The plot on the right shows the result when considering each paper only once

Table 5  Summary statistics by type of models

n (%) is the number (percentage) of papers for which the information was 
retrieved in the review

Model(s) n (%) Median Mean Range IQR

Number of study participants

  Statistical 381 (85%) 421 11,891 4 to 1,621,149 160 to 1475

  ML 260 (94%) 347 19,753 8 to 1,567,636 130 to 1071

  Both 94 (95%) 718 9246 20 to 246,405 192 to 5386

  Unclear 49 (79%) 360 65,176 20 
to 3,041,551

128 to 1603

Number of outcome events

  Statistical 292 (65 %) 84 591 7 to 28,140 41 to 288

  ML 166 (60 %) 95 689 10 to 46,163 48 to 214

  Both 49 (49 %) 75 2572 5 to 74,661 44 to 268

  Unclear 39 (63 %) 98 1133 18 to 25,536 40 to 338

Number of candidate predictors

  Statistical 225 (57 %) 23 33 1 to 1224 14 to 37

  ML 68 (28 %) 33 289 7 to 15,000 24 to 49

  Both 18 (18 %) 22 23 2 to 45 12 to 32

  Unclear 30 (48 %) 13 33 2 to 166 9 to 43

Number of final predictors

  Statistical 370 (82 %) 6 12 1 to 488 4 to 10

  ML 113 (41 %) 6 19 2 to 618 3 to 13

  Both 56 (57 %) 9 88 2 to 3512 6 to 14

  Unclear 39 (63 %) 7 10 2 to 39 5 to 10

Number of models

  Statistical 400 (89 %) 1 2 1 to 10 1 to 2

  ML 157 (57 %) 1 1 1 to 8 1 to 1

  Both 73 (74 %) 4 4 1 to 28 2 to 5

  Unclear 55 (89 %) 1 1 1 to 4 1 to 2

Table 6  Summary statistics of predictive performance measures 
by type of model(s)

Discrimination Calibration Classification

Statistical 334/449(74%) 171/441(39%) 96/255(38%)

ML 124/277(45%) 24/261(9%) 129/262(49%)

Both 80/99(81%) 13/69(19%) 41/78(53%)

Unclear 25/62(40%) 13/60(22%) 19/52(37%)
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A similar pattern was observed for the mean num-
ber of final predictors, which substantially increased 
in the 2015/19 period, but for which the median values 
remained stable over time. These findings are somewhat 
surprising given that the amount of available data (and 
thus, the number of available predictors) has strongly 
increased during the past decade. It is debatable as 
to why this is the case; possible reasons could be that 
some unreported pre-selection of candidate predictors 
is being performed, thus diminishing visible increase 
in the number of predictors, that simpler models that 
use fewer predictors enable greater usability, interpret-
ability, and transferability, and are thus still preferred, 
or that there is a time lag that prevents the detection of 
such increase, yet. Another possible explanation is that 
our review undersampled prognostic models based on 
imaging, as only two reviews included some prediction 
models based on imaging. An interesting finding, based 
only on the data from the Wynants review [4], was that 
imaging models had, as expected, more candidate predic-
tors, but ended up using fewer predictors than the other 
models. This might indicate that the higher complexity of 
these data might play a crucial role especially in model 
development, with the dangers related to overfitting, 
and in the crucial need for proper internal and external 
validation. Also other types of emerging data were not 
represented, as longitudinal information from electronic 
health records (for example, using artificial intelligence 
methods [44]), or prediction models that use unstruc-
tured text [45].

Some recommendations contained in methodologi-
cal guidance are seemingly increasingly being followed 
more closely. For example, the use of internal validation 
increased with time (e.g., bootstrapping), whilst relying 
on split-sample approaches became less commonly used. 
However, we did not evaluate if the methods of internal 
validation were properly used (for example, bootstrap 
can provide overoptimistic estimates if over-optimism is 
not properly addressed, cross-validation can omit some 
important steps as variable selection).

The use of external validation remained rather stable in 
time; however, our paper investigated only external vali-
dation contextually to model development, and therefore 
underestimates the proportion of models that are even-
tually externally validated (in subsequent papers). With 
time, the reporting of discrimination measures improved, 
while it did not for calibration and classification meas-
ures. We decided to report classification measures, as 
they were reported in four reviews and for more than 
40% of the papers. However, their usefulness in assess-
ing the performance of predictive models is not generally 
accepted [46] and we do not advocate that their report-
ing should be more common. In our data the use of ML 

learning methods was common and somewhat increased 
with time; however, generally this was not observed 
within reviews, where the type of model used remained 
rather stable in time. The prognostic modeling does not 
seem to be overwhelmed by ML models, nor by being 
based on extremely large data sets. Most of the research 
is still conducted using moderately sized data sets, both 
in terms of number of study participants and of number 
of variables.

The comparison between ML and statistical models 
indicated that the median number of study participants 
was smaller for ML models, similarly as observed in [47], 
but they had a larger arithmetic mean, and a somehow 
larger number of outcome events. The number of candi-
date predictors was larger (both in terms of median and 
mean), while the median number of used variables was 
very similar. Statistical and ML studies differed substan-
tially in terms of reporting of model performance meas-
ures, especially calibration was very poorly reported for 
ML models.

Overall, we observed a considerable heterogene-
ity in the results from different reviews, indicating that 
the different medical fields might present very different 
characteristics in the development and reporting of prog-
nostic models, and in the data being used. For example, 
the results from the comprehensive review on COVID-19 
[4] differed in several aspects from those based on papers 
from the same period included in the other reviews. Time 
pressure to derive models intended to help handling the 
COVID-19 crisis is one potential explanation, but it may 
also indicate the need to consider different fields of appli-
cation for a better understanding of the overall trends 
and characteristics of prognostic modeling. Moreover, a 
large group of experienced reviewers were involved in the 
COVID-19 project.

Our study had several limitations. The papers included 
in our study are just a part of the many that are being 
developed and published, which are not currently 
included in systematic reviews. The findings of some big 
reviews were not available as raw data, and some impor-
tant information was missing (by design) also from the 
reviews that we included. For example, one review did 
not report the number of study participants and out-
come events, four did not report the number of candi-
date predictors; consequently, we could not fully explore 
the number of outcome events per variable, to gauge the 
risk of overfitting of the included prediction models. For 
the same reason we did not attempt to compare high and 
low-dimensional prediction models.

Thus, one of the main limitation relates to severe 
weaknesses of the reporting of studies included. It 
is expressed in all reporting guidelines and should be 
well known that the number of outcome events is a 
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key criteria for each study. Nevertheless, this number 
was not given in about 20% of the models. (Nearly) all 
studies have missing data and several approaches can 
be used to handle this issue and will lead to different 
results. Consequently, authors should state how they 
handled it, but this information was missing in more 
than every second paper. It seems that many research-
ers have not yet realized the importance of complete, 
transparent and unbiased reporting.

The TRIPOD guidelines for prediction models were 
published a decade ago [22] and the related REMARK 
guideline for prognostic markers studies already ten years 
earlier [48]. Poor adherence to the REMARK guideline 
has been well documented [49]. To improve reporting, 
the REMARK profile was proposed [50]. It is a struc-
tured display of relevant information designed to help 
authors to summarize key aspects of a study, primar-
ily to improve the completeness and transparency of 
the reporting of statistical analyses. Profiles derived for 
15 studies in oncology clearly illustrated weakness in all 
studies, some of them were severe [51]. When writing 
the papers included in our evaluation, reporting guide-
lines were not available for ML methods. We recommend 
the new TRIPOD+AI guideline and the future will show 
whether these guidelines lead to improved reporting of 
ML methods.

One of the main limitations of our study is its timeli-
ness, as only studies published up to 2022 are included in 
our work; the physiological lag between the publication 
of a systematic review and the publication date of the 
papers it includes (at least a year, often longer), and the 
time needed to further process the information, prevents 
a survey of information included in systematic reviews to 
capture the most recent trends. It is possible that more 
papers published nowadays use larger sets of patients and 
of variables, making use of large healthcare databases or 
biobanks, and integrating statistical and ML methods 
for the development of the predictive models (for exam-
ple, see some recently published papers [52, 53]). How-
ever, predictive models based on relatively small sets of 
patients, using demographic, clinic and laboratory vari-
ables, and developed using regression models are still 
commonly found and might still constitute the majority 
of the cases [see for example, [54–57]. We expect that 
future work focusing on the updated analysis of system-
atic reviews will retrieve more analyzable reviews and 
papers, thus providing more detailed information about 
the state of the predictive modeling approaches used in 
practice more recently.

The implementation of systematic reviews should 
be consistent with the guidelines that are available to 
increase the usefulness of their findings [27], which 

would be further improved if the raw data were made 
routinely publicly available.

A further limitation consisted in some characteris-
tics of the reviews that we considered. For example, one 
review included only papers that reported some type of 
internal or external validation, inflating the number of 
such papers in our analyses. Two of the selected reviews 
included only papers that reported the use of at least one 
machine learning method, which could inflate our esti-
mate of the frequency of the use of ML methods. Never-
theless, our further manual categorization of the methods 
being used indicated that these reviews included many 
models that were developed using statistical methods. 
Similarly, a review of machine learning based clinical 
prediction models published in 2019 in the field of oncol-
ogy, found that regression-based models (such as logis-
tic or Cox regression) were categorized as ML methods 
by the authors very often, and constituted about a third 
of the prognostic models that they reviewed [47]. The 
study design of the papers was not reported in most of 
the reviews; when reported, observational studies where 
the vast majority; therefore, studies based on registries 
and on randomized clinical trials might be under-repre-
sented. Also prognostic modeling based on imaging data 
might be under-represented in our review. To the best of 
our knowledge, only two of the selected reviews included 
at least partly prognostic models based on imaging data, 
and a direct comparison between models using images 
and other models was not feasible.

Conclusions
Our study indicates that many of the findings from the 
review surveying the prediction papers from 2008 [5] are 
still relevant today: reporting of practices are not consist-
ently followed, external validation is still very uncom-
mon, as is the evaluation of calibration. Some measures 
are still not reported in the majority of papers, and some 
reviews do not collect all the relevant information.
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