
Recent Contributions of STRATOS Topic Group 4:
Measurement Error and Misclassification

Michael Wallace, University of Waterloo

Slide deck available at: mpwallace.github.io

TG4 Chairs: Paul Gustafson, Pamela Shaw
TG4 Members: Jonathan Bartlett, Hendriek Boshuizen, Raymond Carroll,
Veronika Deffner, Kevin Dodd, Laurence Freedman, Sabine Hoffmann,
Ruth Keogh, Victor Kipnis, Helmut Küchenhoff, Douglas Midthune,
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Topic Group 4: Measurement Error and Misclassification

■ Measurement error: When
what we observe differs
from what we want to
observe.

■ Impact unpredictable, and
requires specialist
methodology.

STRATOS Topic Group 4: Dedicated to exploration and education
for all things measurement error.

Highlight: Two comprehensive ‘guidance papers’ published in
Statistics in Medicine (2020).
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Recent Work

TG4’s recent work includes:

■ Categorization of continuous error-prone observations.

■ Post-prediction inference and Berkson error.

■ Education through our website, R Shiny app, and videos.
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Categorization

Categorization of continuous variables occurs for various reasons:

■ ‘Real-world’ interpretations: e.g., blood pressure (hypertensive
vs. not); BMI (obese, overweight, etc.).

■ Analytical decisions: e.g., to use more familiar methods,
simplify assumptions.

Categorization: Not without caveats, but a common practice.
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Categorization and Measurement Error

Categorization of error-prone variables can lead to misclassification:

■ Truth: Average long-term blood pressure (X ):
• Not hypertensive: X ≤ 130;Xc = 0
• Hypertensive: X > 130;Xc = 1

■ Observed: Single blood pressure measurement (X ∗):
• Not hypertensive: X ∗ ≤ 130;X ∗

c = 0
• Hypertensive: X ∗ > 130;X ∗

c = 1

■ Possibility:
• True X = 125 =⇒ not hypertensive (Xc = 0)
• Observed X ∗ = 135 =⇒ hypertensive (X ∗

c = 1)

■ Question: What are the implications for analysis?
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Project 1: Misconceptions

Led by Anne Thiébaut (Inserm, France).

■ Many myths, misconceptions, and misunderstandings
surround categorization.

■ Measurement error adds to the list.

■ Goal: Explore, explain (and dispel!) five common
misconceptions.
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Misconception 1

“Categorizing a mismeasured exposure can help with finding the
shape of the exposure-outcome relationship”
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Differential and non-differential error

■ Measurement error in X ∗: non-differential w.r.t. outcome Y if

X ∗ ⊥ Y |X

■ Differential error example: patients diagnosed with lung
cancer report their smoking history with a different level of
accuracy to those without lung cancer.

■ Question: If X subject to non-differential error, will the
misclassification in X ∗

c also be non-differential?1

1Yes, but only in highly improbable scenarios: Flegal et al. (1991)
Differential misclassification arising from non-differential errors in exposure
measurement. doi:10.1093/oxfordjournals.aje.a116026
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Misconception 2

“Categorization of a continuous variable with non-differential error
will produce non-differential misclassification”

■ Suppose: Binary
outcome Y
denoting
presence/absence
of disease, with an
exposure positively
associated with
the outcome.
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Misconception 2

“Categorization of a continuous variable with non-differential error
will produce non-differential misclassification”

■ Probability of
misclassification
when categorizing
X ∗ higher around
boundary, so
depends on true
exposure X
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Misconception 2

“Categorization of a continuous variable with non-differential error
will produce non-differential misclassification”

■ In this example:
sensitivity is higher
amongst cases
(75%) than
amongst non-cases
(67%).
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Other Misconceptions

Other misconceptions covered:

■ Categorizing an error-prone continuous exposure mitigates
bias due to measurement error.

■ The comparison of extreme quantiles involves less
misclassification and therefore results in smaller bias.

■ Misclassification of exposure always results in attenuated
association.
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Project 2: Correction

Led by Hendriek Boshuizen (Wageningen University & Research,
Netherlands).

A categorized error-prone continuous variable causes various
problems:

■ Biases effect estimates (both attenuation and not).

■ Obfuscates shapes of relationships.

■ Differential misclassification (even if the continuous variable
error is non-differential).

■ Goal: Develop a new approach to measurement error
correction in this setting.
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Proposed method

We propose a correction method using regression calibration (RC)2:

■ Principle of RC: Estimate X using X ∗ and confounders Z :

X̂ = E [X |X ∗,Z ]

and use X̂ in place of X in standard analysis.

■ Exact for linear models, good for many GLMs.

■ Could be applied to categorical models by replacing Xc with
E [Xc |X ∗,Z ]...

■ ...but categorization of a non-differential errorred X results in
differential misclassification, which violates RC.

2We extend MacMahon et al. Blood pressure, stroke, and coronary heart
disease. Part 1, Prolonged differences in blood pressure: prospective
observational studies corrected for the regression dilution bias. Lancet.
335(8692) 765-774
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Proposed method

■ Assume non-differential error: X ∗ ⊥ Y |X ,Z

■ Define Ck : set of values for category k (e.g. the kth quintile).

■ Define X̂ = E [X |X ∗,Z ], then

E [X̂ |X̂ ∈ Ck ,Z ] = E [X |X̂ ∈ Ck ,Z ]

■ Thus: E [X̂ |X̂ ∈ Ck ,Z ] in category k can be interpreted as the
mean exposure in the category defined by X̂ ∈ Ck .

■ We can link E [X̂ |X̂ ∈ Ck ,Z ] to the mean of Y in category k .
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Proposed method: Residuals

■ If there is confounding, categorization means effect of
confounder is not estimated correctly.

■ Mitigation: use a residual exposure model:

R = X − E [X |Z ] R∗ = X ∗ − E [X ∗|Z ]

■ Like RC estimates of X , we have RC estimates of R:

R̂ = Ê [R|R∗,Z ]

■ We can then define R̂c derived from sets Ck based on R̂ and
use these in our analysis.
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Simulations: Linear, Log-Normal X , confounding
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Simulations: Quadratic, Log-Normal X , no confounding
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Simulations: Quadratic, Log-Normal X , confounding
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Project 2: Conclusions

Overall, our proposed method:

■ Accurate for linear relationships, but in such cases using the
continuous exposure variable would seem prudent.

■ Less effective for strongly non-linear relationships, but still an
improvement over naive analysis.

■ Could be used to help determine whether linear modelling is
appropriate.
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Project 3: Post-prediction Inference

Preceding projects focused on classical measurement error.

e.g., Reported usual daily calorie intake X ∗ equals true intake X
plus some random error U:

X ∗ = X + U; U ⊥ X
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Berkson Error

In contrast, there is Berkson error.

e.g., True nutrient absorption X equals nutrient intake X ∗ plus
some random error U:

X = X ∗ + U; U ⊥ X ∗
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Classical vs. Berkson: Exposure
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Berkson Error Projects

TG4 has three projects on Berkson error, addressing:

■ An introduction to Berkson error in exposure and outcome
variables.

■ The impact of Berkson error on estimating distributional
measures and a correction approach.

■ The relationship between Berkson error and regression
calibration.
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Berkson Error and Regression Calibration

Led by Lillian Boe (Memorial Sloan Kettering Cancer Center, NY).

■ In some settings predicted values used to estimate true values.

■ Example: Schofield’s equation to predict basal metabolic rate
as a function of body mass and activity level.

■ Such predicted measures often subject to Berkson error.

■ In particular: Regression calibration and Berkson error highly
related.
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Berkson Error and Regression Calibration

Suppose X ∗ = X + U (classical error). RC tells us to use

X̂ = E [X |X ∗,Z ]

in place of X .

But: X̂ is itself an error-prone measurement of X . How is this
an improvement?

Answer: X̂ has Berkson error, and may result in unbiased
effect estimates in certain settings.
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Regression Calibration: Guidance

Viewing RC with a Berkson lens highlights limitations.

e.g., We must estimate X̂ = E [X |X ∗,Z ] using the same
variables Z in the calibration equation as in the outcome
model.

This principle means that, for any given exposure, there is no
single calibration equation that is appropriate for all analyses.
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Regression Calibration: Guidance

This project provides a checklist when implementing RC, including:

■ Further modelling considerations for the outcome model.

■ Where and how to source additional data to inform the
calibration model.

■ Advice on adjusting standard errors to account for calibration
uncertainty.
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TG4 Resources

■ Website featuring
previous presentations
and other resources.

■ General audience
introductory video series.

■ An R Shiny app for exploring measurement error.
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■ Measurement Error Guidance: P. A. Shaw et al. (2020). STRATOS guidance
document on measurement error and misclassification of variables in
observational epidemiology: Part 2 - sample size, more complex methods of
adjustment and advanced topics. Statistics in Medicine 39(16) 2197-2231.

■ Measurement Error Guidance: R. H. Keogh et al. (2020). STRATOS guidance
document on measurement error and misclassification of variables in
observational epidemiology: Part 1 - basic theory, validation studies and simple
methods of adjustment. Statistics in Medicine 39(16) 2232-2263.

■ Epidemiologic Review Paper: P. A. Shaw et al. (2018). Epidemiologic analyses
with error-prone exposures: Review of current practice and recommendations.
Annals of Epidemiology 28(11) 821-828.

■ Misconceptions: A. C. M. Thiébaut et al. (2025). Five misconceptions about
categorizing exposure variables measured with error in epidemiological research.
In review.

■ Regression Calibration and Berkson Error: L. A. Boe et al. (2023). Issues in
Implementing Regression Calibration Analyses. Practice of Epidemiology 192(8)
1406-1414.

■ General Audience Article: M. P. Wallace (2020). Analysis in an imperfect
world. Significance 17(1).

■ TG4 website: http://www.stratostg4.statistik.uni-muenchen.de

■ Shiny app: https://mem-explorer.shinyapps.io/MEMExplorer-v5

■ Introductory videos: https://youtube.com/@TheSTRATOSinitiative
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