

Building blocks of efficient initial data analysis and data quality assessments Best practice examples

Marianne Huebner and Carsten O. Schmidt on behalf of TG3

Topic Group 3 of STRATOS: Initial Data Analysis

- Marianne Huebner (Michigan, USA)
- Carsten O. Schmidt (Greifswald, Germany)
- Lara Lusa (Ljubljana, Slovenia)
- Mark Baillie (Basel, Switzerland)
- Saskia le Cessie (Leiden, Netherlands)
- Michael Schell (Florida, USA)

https://stratosida.github.io/

What is Initial Data Analysis (IDA)?

IDA = systematic process to provide reliable knowledge about the data to determine the suitability of the data for the main data analysis

- Aligned with the research aims and the main data analysis
- Does NOT include hypothesis generating activities
- Does NOT include assessing associations between predictors and outcomes

Publications by our team

- Contemporary framework for initial data analysis
- Hidden analyses (systematic review)
- Ten Simple Rules for initial data analysis
- Regression without regrets
- IDA checklist for longitudinal studies
- International consensus project: Statistical Analysis Plan for Observational Studies including IDA plan
- In progress: Teaching example including dataset, R code, workflow: analysis plan→ IDA → regression model

Why should you be concerned about underlying data properties?

Data quality assessment

Data quality dashboard

Underlying knowledge about data: Metadata

Variable names

Label

Type (integer, string, date,..)

Values (categories) Range (continuous)

Expectations (distribution, missingness,...)

	Α	В	С	D	E	F	G	Н	1	J
1	VAR_NAMES	LABEL	DATA_TYPE	SCALE_LEVEL	VALUE_LABELS	MISSING_LIST_TABLE	HARD_LIMITS	DETECTION_LIMITS	SOFT_LIMITS	DISTRIBUTIO
2	v00000	CENTER_0	integer	nominal	1 = Berlin 2 = Hamburg	g 3 = Leipzig 4 = Col	ogne 5 = Munic	h		
3	v00001	PSEUDO_ID	string	na						
4	v00002	SEX_0	integer	nominal	0 = females 1 = males					
5	v00003	AGE_0	integer	ratio			[18;Inf)			
6	v00103	AGE_GROUP_0	string	ordinal						
7	v01003	AGE_1	integer	ratio			[18;Inf)			
8	v01002	SEX_1	integer	nominal	0 = females 1 = males					
9	v10000	PART_STUDY	integer	nominal	0 = no 1 = yes					
10	v00004	SBP_0	float	ratio		missing_table	[80;180]	[0;265]	(90;170)	normal
11	v00005	DBP_0	float	ratio		missing_table	[50;Inf)	[0;265]	(55;100)	normal
12	v00006	GLOBAL_HEALTH_V	float	ratio		missing_table	[0;10]		[1;9]	uniform
13	v00007	ASTHMA_0	integer	nominal	0 = no 1 = yes	missing_table	[0;1]			
14	v00008	VO2_CAPCAT_0	string	ordinal	A = excellent < B = good	missing_table				
15	v00009	ARM_CIRC_0	float	ratio		missing_table	[0;Inf)		(0;60]	normal
16	v00109	ARM_CIRC_DISC_0	integer	ordinal	1 = (-Inf,20] < 2 = (20,30)	missing_table	[1;3]			
17	v00010	ARM_CUFF_0	integer	ordinal	1 = (-Inf,20] < 2 = (20,30)	missing_table	[1;3]			

Statistical Analysis Plan for Observational Studies

METHODS: MAIN DATA ANALYSIS (MDA)							
Description of observation units	5.1	Describe methods of analysis to summarize the characteristics of the observation units					
Main data analysis methods	5.2	Describe the methods of analysis for each research objective, including a quantities to be estimated, the models or estimators, variables, and method to mitigate potential bias for non-random selection					
Assumptions and diagnostics	5.3	State any statistical assumptions of each analysis. Specify all measures and diagnostics used to evaluate statistical assumptions and appropriateness of analyses, including graphical tools					
Sample size	5.4	Describe how the sample size was determined, including all assumptions supporting the sample size calculation					
Software	5.5	Describe software used for all analyses, visualizations, data management, data archiving, or backups					

Assumes "appropriate" dataset

- Changes mid-analysis
 - Ad-hoc decisions non-transparent
- Time consuming repeating analyses

SAPI: Statistical Analysis Plan with **IDA**

METHODS: INITIAL DATA ANALYSIS (IDA)

Data preparation	6.1]
Unit missingness	6.2]
Unit profile	6.3]
Item missingness	6.4]
Univariable descriptions	6.5] t
Multivariable descriptions	6.6]

Choices are deliberate: aligned with research objectives and MDA.

Example: Univariable distributions

Univariate summary of Blood urea nitrogen [mg/dl] original [left] vs. pseudo-log transformed scale [right]

All observed values, the distribution and the, min, max and interquartile range are reported n = 14519 subjects displayed. 172 subjects with missing values are not presented. Pseudo-log transformation is suggested.

A log transformation stabilizes the distribution of this predictor

IF used in a regression model, it will change the interpretation of the coefficients.

Example: Multivariable distributions

NEU and WBC are highly correlated...

NEU is a component of WBC

Example: IDA in longitudinal studies

Time metric of data collection process
Time metric of analysis strategy

What the PI knew (or not) and didn't tell the statistician

- Physical activity data were collected with GPS (missing data when exercising inside buildings)
- 2. New medical procedure was introduced and for awhile performed together with standard procedure (outcome=duration)
- 3. Data were collected in two periods with a gap of several months
- 4. IDA findings were more interesting to the investigators than the statistical model: unexpected distributions

Iterative process of developing an analysis plan

Roadmap for Statistical Analysis Plan for Observational Studies (SAPI)

SAP guideline developed via a (international) consensus process with researchers, analysts, editors/reviewers, instructors/mentors.

Lessons learned: Initial Data Analysis

IDA plan is part of a statistical analysis plan

IDA (and data quality assessments):

- Is the foundation for correct modeling
- Needs to be reported in papers
- Takes time (but ignoring it takes more time later!)

Pls and statisticians learn from each other when discussing IDA report:

- Understanding data content better; learning about expected or unexpected data properties
- "Reality hits" for research aims; confirm suspicions from the protocol phase

