
STUDY PROTOCOL

Evaluating variable selection methods for

multivariable regression models: A simulation

study protocol

Theresa UllmannID
1, Georg Heinze1, Lorena Hafermann2, Christine Schilhart-

WallischID
1,3, Daniela DunklerID

1*, for TG2 of the STRATOS initiative¶

1 Institute of Clinical Biometrics, Center for Medical Data Science, Medical University of Vienna, Vienna,

Austria, 2 Institute of Biometry and Clinical Epidemiology, Charité – Universitätsmedizin Berlin, corporate
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Abstract

Researchers often perform data-driven variable selection when modeling the associations

between an outcome and multiple independent variables in regression analysis. Variable

selection may improve the interpretability, parsimony and/or predictive accuracy of a

model. Yet variable selection can also have negative consequences, such as false exclu-

sion of important variables or inclusion of noise variables, biased estimation of regression

coefficients, underestimated standard errors and invalid confidence intervals, as well as

model instability. While the potential advantages and disadvantages of variable selection

have been discussed in the literature for decades, few large-scale simulation studies have

neutrally compared data-driven variable selection methods with respect to their conse-

quences for the resulting models. We present the protocol for a simulation study that will

evaluate different variable selection methods: forward selection, stepwise forward selec-

tion, backward elimination, augmented backward elimination, univariable selection, uni-

variable selection followed by backward elimination, and penalized likelihood approaches

(Lasso, relaxed Lasso, adaptive Lasso). These methods will be compared with respect to

false inclusion and/or exclusion of variables, consequences on bias and variance of the

estimated regression coefficients, the validity of the confidence intervals for the coeffi-

cients, the accuracy of the estimated variable importance ranking, and the predictive per-

formance of the selected models. We consider both linear and logistic regression in a low-

dimensional setting (20 independent variables with 10 true predictors and 10 noise vari-

ables). The simulation will be based on real-world data from the National Health and Nutri-

tion Examination Survey (NHANES). Publishing this study protocol ahead of performing

the simulation increases transparency and allows integrating the perspective of other

experts into the study design.
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1 Introduction

Data-driven variable selection is frequently performed when modeling the associations

between an outcome and multiple independent variables (sometimes also referred to as

explanatory variables, covariates or predictors). Variable selection may help to generate parsi-

monious and interpretable models, and may also yield models with increased predictive accu-

racy. Despite these potential advantages, data-driven variable selection can also have

unintended negative consequences that many researchers are not fully aware of. Variable selec-

tion induces additional uncertainty in the estimation process and may cause biased estimation

of regression coefficients, model instability (i.e., models that are not robust with respect to

small perturbations of the data set), and issues with post-selection inference such as underesti-

mated standard errors and invalid confidence intervals [1–5].

A recent review [1] provided guidance about variable selection and gave an overview of

possible consequences of variable selection. However, there are few systematic simulation

studies that compare different variable selection methods with respect to their consequences

for the resulting models (for some exceptions, see [6–10]). While many articles proposing new

variable selection methods include a comparison with existing methods (based on simulated

or real data), these comparisons are typically somewhat limited, often comparing the new

method to only one to three competitors, even though there are many more existing methods.

Moreover, these articles are inherently biased towards demonstrating superiority of the new

methods. In particular, such studies cannot be considered as neutral. A neutral comparison

study is a study whose authors do not have a vested interest in one of the competing methods,

and are (as a group) approximately equally familiar with all considered methods [11, 12].

More neutral comparison studies about existing variable selection methods are needed to bet-

ter understand their properties, a viewpoint that aligns with the goals of the STRATOS initia-

tive (STRengthening Analytical Thinking for Observational Studies [13]). The STRATOS

initiative is an international consortium of biostatistical experts, and aims to provide guidance

in the design and analysis of observational studies for specialist and non-specialist audiences.

This perspective motivates our comprehensive simulation study.

We will focus on descriptive modeling (i.e., describing the relationship between the out-

come and the independent variables in a parsimonious manner) and predictive modeling (i.e.,

predicting the outcome as accurately as possible) [14]. Our setting is multivariable regression

analysis with one outcome variable. The outcome is either continuous (linear regression) or

binary (logistic regression). We simulate data in a low-dimensional scenario (20 variables con-

sisting of 10 true predictors and 10 noise variables). Different variable selection methods with

multiple parameter settings are compared: forward selection, stepwise forward selection, back-

ward elimination, augmented backward elimination [15], univariable selection, univariable

selection followed by backward elimination, the Lasso [16], the relaxed Lasso [9, 17], and the

adaptive Lasso [18]. We compare the performances of these methods with respect to false

inclusion and/or exclusion of variables, consequences on bias and variance of the estimated

regression coefficients, the validity of the confidence intervals for the coefficients, the accuracy

of the estimated variable importance ranking, and finally the predictive performance of the

selected models.

Using simulated instead of real data allows us to a) know the true data generating process

and b) systematically vary several data characteristics [19, 20]. For example, we will include

varying sample sizes and R2, as the consequences of variable selection depend on these param-

eters. To ensure that the simulation results are practically relevant, we use real data as the start-

ing point for our simulation. The distributions and correlation structure of the variables are

based on data from the National Health and Nutrition Examination Survey (NHANES) [21].
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The choice of variables and true regression coefficients is inspired by an applied study about

predicting the difference between ambulatory/home and clinic blood pressure readings [22].

Our simulated data thus mimics real cardiovascular data.

Our focus is on low-dimensional data, which is reflected in our simulation setting with

twenty independent variables. Data of this type frequently appears in medicine and other

application fields, and researchers often apply variable selection in this context. For example, a

systematic review of models for COVID-19 prognosis [23, 24] identified 236 newly developed

regression models for prediction. Data-driven variable selection was applied (and reported)

for 196 models. In 165 models both the number of candidate predictors (i.e., the predictors

considered at the start of data-driven selection) and the number of predictors in the final

model were reported; the median numbers were 28 (range 4–130), and 6 (range 1–38), respec-

tively. This demonstrates that low- to medium-dimensional data played an important role in

COVID-19 prediction research. Of course, data-driven variable selection is also relevant for

high-dimensional data. Comparing variable selection methods for high-dimensional data

would require a different study design and is not the purpose of this planned simulation study.

As mentioned above, neutrality is an important goal when conducting systematic compari-

son studies. “Perfect” neutrality may be the ultimate goal, but this ideal can be difficult to

achieve in practice. While we aim to be as neutral as possible, we disclose (for the purpose of

full transparency) that one of the methods for variable selection included in our comparison,

namely augmented backwards elimination, was originally proposed by two authors of the pres-

ent study protocol [15]. Our goal was to not let this fact influence our choice of study design,

though unconscious biases can never be fully excluded. Striving for as much neutrality as pos-

sible motivated us to publish this study protocol. This will allow us to integrate the comments

of reviewers before performing the simulation. For the design of our study, results from previ-

ous smaller simulation studies and pilot studies were taken into account [1]; however, the

study outlined in this protocol has not yet been run and analyzed. Preregistration of study pro-

tocols for simulation studies/methodological studies is still very rare (for an exception, see

[25]). However, this practice could offer similar advantages to those discussed for preregistra-

tion in applied research, such as increased transparency and prevention of “hindsight bias”

[26]. Potential advantages of preregistering protocols for simulation studies, but also possible

limitations and challenges, are discussed more extensively elsewhere [27].

A specific goal of our simulation study is to evaluate previously published recommenda-

tions about variable selection [1], which we discuss in Section 2. We then describe our simula-

tion design in Section 3, explain the planned code review in Section 4, and conclude the

protocol with some final remarks in Section 5.

2 Previous variable selection recommendations

Varied viewpoints exist in the literature as to whether researchers should apply data-driven

variable selection, and, if so, which methods and parameters are deemed preferable. Some

authors generally caution against data-driven variable selection, stressing potential negative

consequences [5]. Other authors put more focus on potential advantages of variable selection

and are more optimistic about using selection methods, at least if the sample size is large

enough and if selection is accompanied by a stability analysis [28]. In a review conducted by

three co-authors of the present study protocol, Heinze et al. [1] summarized different perspec-

tives from the literature. Drawing upon existing recommendations, but also taking their own

experience and a small simulation study into account, they derived recommendations for the

usage of variable selection methods. These recommendations consider both benefits and draw-

backs of variable selection, thereby reconciling different viewpoints on the matter. The
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recommendations depend on the “events-per-variable” (EPV) in the data. The EPV is the ratio

between sample size (in linear regression) or the number of the less frequent outcome (in

logistic regression) and the number of independent variables. Data-driven variable selection is

applied on a carefully designed “global” model which includes all independent variables rele-

vant for the research question. The denominator of EPV refers to the number of design vari-

ables (including possible dummy variables and other constructed variables) in this global

model. The following bullet points list the recommendations, and how we plan to evaluate

them.

• EPV> 25: While variable selection may generally work well for a large EPV value, the selec-

tion of independent variables with small effect size can still be unstable. If backward elimina-

tion is used, a stringent threshold of α = 0.05 or selection with the BIC may lead to a more

accurate selection of variables than milder thresholds.

In our study: We will check whether selection rates of variables with small standardized

regression coefficients (e.g., ±0.25) are notably different from either 0 or 1 (which indicates

instability). For backward elimination, we will evaluate whether the selection of variables is

more accurate when using the threshold α = 0.05 or the BIC (which corresponds to even

stricter thresholds for our considered sample sizes [1]), compared to using larger α values.

• 10< EPV� 25: In general, the selection of variables might be unstable with such an EPV.

When variables with unclear effect size are selected, their effects might be over-estimated.

Penalized estimation (Lasso) or postestimation shrinkage is thus recommended. If backward

elimination is used, a threshold corresponding to selection with the AIC (approximately α =

0.157) is recommended, but not smaller α values.

In our study: Again, we will evaluate stability by checking whether selection rates of variables,

particularly those with small standardized regression coefficients, are notably different from

either 0 or 1. We will also calculate the conditional bias (i.e., bias conditioned on selection)

of the variables and analyze whether variables with small standardized regression coefficients

have large conditional bias away from zero. For backward elimination, we will evaluate to

which extent a threshold of α = 0.157 (or an even milder threshold of α = 0.5) selects the true

predictors more frequently than smaller thresholds (i.e., a fixed threshold of α = 0.05 or

selection with the BIC) [3].

• EPV� 10: Data-driven variable selection is generally not recommended.

In our study: We will analyze whether variable selection has negative consequences with

respect to the different performance criteria.

The results of variable selection are not only influenced by EPV, but also by other aspects

such as the R2 of the model. We will thus consider different R2 values in our simulation study.

The recommendations above do not take R2 into account, as the R2 of the model is typically

not known prior to the data analysis.

3 Simulation design

Morris et al. [19] proposed to describe the following components when reporting a simulation

study: the aims of the study (A), the data-generating mechanisms (D), the estimands (i.e., the

population quantities which are estimated) and other targets of interest (E), the methods to be

compared (M), and the performance measures used for evaluating the methods (P). The

ADEMP components of our study are briefly summarized in Tables 1 and 2. We now describe

the components in more detail.
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3.1 Aims (A)

We aim to compare different variable selection methods for multivariable linear or logistic

regression, with respect to their consequences for the resulting models. We consider conse-

quences on bias and variance of the estimated regression coefficients, validity of confidence

intervals for the coefficients, false inclusion or exclusion of variables, and predictive perfor-

mance. We analyze the behavior of variable selection methods. . .

• . . . depending on sample size/EPV, with particular focus on evaluating the recommenda-

tions of Heinze et al. [1],

• . . . depending on the R2 of the population model,

• . . . depending on the modeling goal (description or prediction),

• . . . when functional forms are misspecified (i.e., when fitting models assuming linear func-

tional forms of continuous predictors even though the true functional forms are nonlinear),

• . . . when switching from our realistic scenario that mimics cardiovascular data to simplified

scenarios (i.e., all variables are normally distributed and/or uncorrelated).

3.2 Data-generating mechanisms (D)

3.2.1 Simulation of independent variables (predictors and noise variables). We simu-

late 20 independent variables: 10 true predictors (from now on just called “predictors”) and 10

noise variables. The correlation structure and distributions are based on real-world data from

Table 1. Summary of the simulation design, part 1: Aims and data-generating mechanisms.

Aims (Section 3.1) Comparison of popular data-driven variable selection methods for multivariable linear

or logistic regression, with respect to their consequences for the resulting models.

Data-generating

mechanisms (Section

3.2)

• 20 variables: 10 predictors X1, . . ., X10 and 10 noise variables X11, . . ., X20 (mixture of

binary and continuous variables)

• Distributions and correlation structure of the variables are based on NHANES data

[21] (see Fig 1, S1 Fig and S1 Table).

• Standardized regression coefficients for the predictors X1, . . ., X10: ðb
sd
1
; . . . ;b

sd
10
Þ ¼

ð1:5; � 1; 1; 0:75; 0:5; 0:5; 0:5; � 0:5; � 0:25; � 0:25Þ The regression coefficients for X11,

. . ., X20 are set to zero.

• For settings with linear effects, the outcome Y is simulated as follows:

• For linear regression: Y = xβ + � with �* N(0, σ2), and σ2 chosen such that R2 =

0.45 (setting 1), R2 = 0.15 (setting 2), or R2 = 0.7 (setting 3). The intercept β0 is set to

36.

• For logistic regression: outcomes Y are drawn from a Bernoulli distribution with

event probability 1/(1 + exp(−c xβ)). The intercept β0 and the constant c> 0 are

adjusted such that

• the expected event probability equals 0.3 with Cox-Snell R2
CS ¼ 0:40 (setting 4) or

R2
CS ¼ 0:13 (setting 5)

• the expected event probability equals 0.05 with Cox-Snell R2
CS ¼ 0:16 (setting 6) or

R2
CS ¼ 0:05 (setting 7)

• To evaluate models with mildly misspecified functional forms (a frequent situation in

practice), each of the 7 settings is also considered with Y generated with nonlinear

effects, yielding 14 settings in total (see Table 3).

• Additionally, we consider three simplified scenarios with all variables

N ð0; 1Þ-distributed and/or uncorrelated (see Section 3.2.5 for details).

• Each setting is considered with varying sample sizes (see Table 4).

https://doi.org/10.1371/journal.pone.0308543.t001
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the 2013–14 and 2015–2016 cycles of the National Health and Nutrition Examination Survey

(NHANES) [21]. To choose suitable variables in the NHANES data, we drew inspiration from

a regression model reported by Sheppard et al. [22] for predicting the difference between dia-

stolic blood pressure readings as measured ambulatory/at home versus in the clinic. The vari-

ables are described in detail in S1 Appendix. The correlation matrix S for the simulation is

based on the empirical correlation matrix of the variables. For better interpretability, we set

correlations below 0.15 to zero and round all values to the closest multiple of 0.05 (see S1 Fig

and S1 Table for the resulting correlation matrix).

To obtain distributions from the NHANES data, we fit Bernoulli distributions for the

binary variables, and normal distributions, log-normal distributions, or approximations of the

empirical cumulative distribution function (CDF) for the continuous variables. For each con-

tinuous variable, we truncate its distribution with the minimum of the variable in the

NHANES data as the lower bound and the maximum as the upper bound. The resulting distri-

butions are as follows (see also Fig 1):

• predictors: X1 (log-normal), X2 (continuous with approximated CDF), X3 (log-normal), X4

(binary, p = 0.50), X5 (normal), X6 (binary, p = 0.29), X7 (log-normal), X8 (log-normal), X9

(normal), X10 (binary, p = 0.11)

Table 2. Summary of the simulation design, part 2: Estimands, methods, and performance measures.

Estimands and other targets

(Section 3.3)

Regression coefficients, model selection, predictions

Methods (Section 3.4) • Forward selection with AIC

• Stepwise forward selection with AIC (forward selection with backward

elimination steps)

• Backward elimination with α = 0.05, α = 0.5, AIC, or BIC

• Augmented backward elimination (ABE) with AIC and τ = 0.05

• Univariable selection with α = 0.05 or α = 0.20

• Univariable selection with α = 0.20 followed by backward elimination with α =

0.05

• Lasso with λ tuned with 10-fold cross-validation

• Relaxed Lasso with λ tuned with 10-fold cross-validation or BIC

• Adaptive Lasso with λ tuned with 10-fold cross-validation

We also consider the global model with all variables.

Performance measures (Section

3.5)

Mainly for descriptive models:

• Bias and root of mean squared error of the coefficients

• Coverage and width of the 95% confidence intervals for the coefficients

• Type 1 error rate/power

• False positive rate/true positive rate

• Kendall’s τB for variable rankings

• Selection rate of the true model, of an over-selection model, and of an under-

selection model

Mainly for prediction models:

• Local bias and local root mean squared error w.r.t. estimated vs. true linear

predictor

• Root mean squared error and median absolute error of estimated vs. true linear

predictor, additionally AUC for logistic regression

• Integrated calibration index (ICI)

https://doi.org/10.1371/journal.pone.0308543.t002
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• noise variables: X11 (log-normal), X12 (normal), X13 (log-normal), X14 (binary, p = 0.61), X15

(normal), X16 (binary, p = 0.20), X17 (log-normal), X18 (normal), X19 (normal), X20 (binary,

p = 0.20)

The distributions, together with the correlation matrix S, are then used as input for the nor-

mal-to-anything (NORTA) method for simulation [29, 30].

3.2.2 Choice of regression coefficients. For choosing the standardized regression coeffi-

cients of the predictors X1, . . ., X10, we drew inspiration from the coefficients reported for the

regression model of Sheppard et al. [22]:

ðb
sd
1
; . . . ; b

sd
10
Þ
t
¼ ð1:5; � 1; 1; 0:75; 0:5; 0:5; 0:5; � 0:5; � 0:25; � 0:25Þ

This choice reflects a mixture of stronger and weaker effects, a situation typical for many

applications in biology and medicine. We would expect different behaviors of the predictors

during variable selection depending on their effects.

The standardized coefficients b
sd
j are transformed into non-standardized coefficients βj as

follows: standard deviations (SDs) of the variables are calculated based on a single large simu-

lated dataset DP to approximate the population (n = 100, 000) and the standardized coefficients

are divided by these SDs.

The regression coefficients for the noise variables X11, . . ., X20 are set to zero.

Fig 1. Distributions and pre-specified standardized regression coefficients of predictors and noise variables.

Predictors are ordered by absolute values of standardized regression coefficients. Histograms are based on a large

simulated dataset (n = 100, 000).

https://doi.org/10.1371/journal.pone.0308543.g001
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As intended, there is no systematic association between the absolute values jb
sd
j j and the

coefficients of determination R2
j for the regression of each variable Xj on all other respective

variables Xl, l = 1, . . ., 20, l 6¼ j (see S2 Fig). Moreover, five out of ten predictors have univari-

able effects that are larger than their multivariable effects. (Here, multivariable effects are

obtained by fitting a model with all predictors and noise variables).

3.2.3 Simulation of outcome Y. The outcome Y is simulated as follows:

• For linear regression: Y = xβ + �, with �* N(0, σ2), and σ2 chosen such that R2 = 0.45 (set-

ting 1, main scenario), R2 = 0.15 (setting 2, low R2 scenario), or R2 = 0.7 (setting 3, high R2

scenario). The intercept β0 is set to 36. The vector x = (1, x1, . . ., x10) denotes a simulated

realization of the variables X1, . . ., X10 with an added constant for the intercept.

The required σ2 values for obtaining R2 = 0.45, R2 = 0.15, or R2 = 0.7 can be calculated as fol-

lows [9]:

s2 ¼ VarðXPβÞ
1 � R2

R2
;

where Var(XPβ) is calculated with the design matrix XP obtained from the approximate

“population dataset” DP.

• For logistic regression: outcomes Y are drawn from a Bernoulli distribution with event prob-

ability

1

1þ expð� cxβÞ
;

with a constant c> 0.

First, we set c = 1 and adjust the intercept β0 manually such that the overall expected event

probability equals either 0.3 or 0.05. The resulting Cox-Snell R2
CS values are 0.40 for event

rate 0.3 and 0.16 for event rate 0.05. These values constitute the main settings for logistic

regression, but note that they are different from the R2 value of 0.45 in the main setting for

linear regression (setting 1). Because setting 2 for linear regression considers 1/3 of the R2

value in setting 1, we add analogous “low R2
CS settings” for logistic regression: c and β0 are

adjusted to obtain 1/3 of the original R2
CS values (0.40/3 = 0.13 for event rate 0.3, and 0.16/

3 = 0.05 for event rate 0.05). In contrast to linear regression (setting 3), we do not include an

additional high R2 setting: the maximum Cox-Snell R2 values that are possible in theory are

less than 1 (for event rate 0.3: approx. 0.71, for event rate 0.05: approx. 0.33), thus the R2 val-

ues in the main settings can already be considered as relatively high.

In summary, this yields the following settings 4–7, for which we also estimated the corre-

sponding population areas under the receiver operating characteristic curve (AUC) based on

the “population dataset” DP:

• the overall expected event probability equals 0.3 with R2
CS ¼ 0:40, AUC = 0.90 (setting 4)

or R2
CS ¼ 0:13, AUC = 0.73 (setting 5),

• the overall expected event probability equals 0.05 with R2
CS ¼ 0:16, AUC = 0.94 (setting 6)

or R2
CS ¼ 0:05, AUC = 0.78 (setting 7).

3.2.4 Nonlinear functional forms. So far, we assumed that the functional forms of the

effects of continuous predictors on Y are linear. In applied studies in biology and medicine,

the actual functional forms of such variables might often be nonlinear, but researchers
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nonetheless fit a model with linear functional forms, e.g., because they are not aware that some

functional forms might be nonlinear, or because they prefer a simpler model. To analyze the

behavior of variable selection methods in this scenario, we include settings 1b-7b (correspond-

ing to settings 1–7) where all predictors have nonlinear functional forms. The models that we

consider for analysing the simulated data (linear/logistic regression) will not take the nonlinear

functional forms into account and will thus be misspecified.

For each continuous predictor Xj, we define a function gj(x) that describes the nonlinear

functional form of the effect of the predictor on Y. We choose various functional forms: qua-

dratic, log-quadratic, exponential and sigmoid. The functions are depicted in S3 Fig; exact def-

initions are given in S1 Appendix.

The nonlinear composite predictor is then simulated as

b
ðgÞ
0
þ b

ðgÞ
1
g1ðX1Þ þ . . .þ b

ðgÞ
10
g10ðX10Þ

Here, the coefficients b
ðgÞ
j (the letter g alludes to the nonlinear transformations gj) are cho-

sen for continuous predictors such that

b
ðgÞ
j SDðgjðXjÞÞ¼

!
jb

sd
j j ¼ jbjjSDðXjÞ;

to obtain effects that are comparable in magnitude to the linear effects. The standard devia-

tions SD(Xj), SD(gj(Xj)) are calculated based on the approximate “population dataset” DP.

After determining β(g), the outcome Y is simulated as previously described in Section 3.2.3,

with xβ replaced by the nonlinear composite predictor.

The simulation settings 1–7 with linear effects and settings 1b-7b with nonlinear effects are

summarized in Table 3. For settings 1b-7b, the R2 values hold for the true model with nonlin-

ear functional forms; the achieved R2 values when functional forms are misspecified are

expected to be lower. For logistic regression, using the coefficients b
ðgÞ
j for nonlinear effects in

the main scenario yields slightly larger Cox-Snell R2
CS values compared to the analogous set-

tings with linear effects: 0.43 for event rate 0.3 and 0.20 for event rate 0.05. For the low R2
CS

Table 3. Overview of simulation settings.

linear regression logistic regression

event rate 0.3 event rate 0.05

main scenario. . .

. . .with linear effects setting 1 setting 4 setting 6

R2 = 0.45 R2
CS ¼ 0:40 R2

CS ¼ 0:16

. . .with nonlinear effects setting 1b setting 4b setting 6b

R2 = 0.45 R2
CS ¼ 0:43 R2

CS ¼ 0:20

low R2 scenario. . .

. . .with linear effects setting 2 setting 5 setting 7

R2 = 0.15 R2
CS ¼ 0:13 R2

CS ¼ 0:05

. . .with nonlinear effects setting 2b setting 5b setting 7b

R2 = 0.15 R2
CS ¼ 0:14 R2

CS ¼ 0:07

high R2 scenario. . .

. . .with linear effects setting 3

R2 = 0.7

. . .with nonlinear effects setting 3b

R2 = 0.7

https://doi.org/10.1371/journal.pone.0308543.t003
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scenario, c and b
ðgÞ
0

are adjusted to obtain 1/3 of the R2
CS values (0.43/3 = 0.14 for event rate 0.3,

and 0.20/3 = 0.07 for event rate 0.05), analogously to the procedure for settings with linear

effects.

For the global model in the settings with nonlinear effects, we will not only calculate the

usual standard errors of the regression coefficients, but also robust standard errors [31], to

check whether robust SEs improve the coverage of the confidence intervals. If robust SEs

improve the coverage for the global model, it would be interesting to analyze whether this is

also the case for models obtained by variable selection; however, combining robust standard

errors with variable selection requires some further work and would go beyond the scope of

the proposed study. For now, we will restrict the investigation of robust SEs to the global

model for linear regression.

3.2.5 Simplified settings. While our main focus is on simulating variables of various dis-

tribution types (e.g., Bernoulli, normal, and log-normal) and with correlation matrix S based

on the empirical correlation matrix from the NHANES data (S1 Table), we are also interested

in the behavior of the variable selection methods for data with simpler distribution-correlation

structures. We thus consider the three following simplified scenarios:

1. The variables are multivariate normal and independent: X � N 20ð0; I20Þ, with I20 denoting

the 20 × 20 identity matrix.

2. The variables are multivariate normal and correlated: X � N 20ð0;SÞ, with S denoting the

correlation matrix as described above.

3. The variables have the same individual distributions as described in Section 3.2.1 (Fig 1),

but are not correlated.

For each of these three scenarios, we will consider the settings 1–2 and 4–7 (i.e., the main

scenario and low R2 scenario) with linear effects. This yields 3 * 6 = 18 simplified settings. For

logistic regression, using the coefficients b
sd
j from Section 3.2.2. will yield Cox-Snell R2

CS values

that are slightly different from those given in Table 3.

Depending on the results for settings 1b-2b and 4b-7b with nonlinear effects, we might

additionally consider nonlinear effects for the simplified scenario 3 (variables not multivariate

normal and not correlated).

3.2.6 Sample sizes. For linear regression, we consider eight different sample sizes: 100,

200, 400, 500, 800, 1600, 3200, and 6400. These sample sizes result when doubling sample size

six times from 100. Additionally, the sample size 500 is included because it corresponds to

EPV = 25, and this EPV value was specifically mentioned in the recommendations of Heinze

et al. [1].

For logistic regression, we first choose sample sizes corresponding to EPV = 25: n = 1667

(event rate 0.3) respectively n = 10, 000 (event rate 0.05).The other sample sizes for logistic

regression are chosen differently depending on the event rate.For event rate 0.3, sample sizes

are “aligned” to the samples sizes fnðlinÞ1 ; . . . ; nðlinÞ7 g ¼ f100; 200; 400; 800; 1600; 3200; 6400g

of linear regression as follows: sample sizes nðlogÞk for logistic regression are chosen such that at

sample size n ¼ nðlogÞk , the regression coefficients in the logistic regression have approximately

the same standard errors as the regression coefficients in the linear regression at n ¼ nðlinÞk . Our

procedure for aligning the sample sizes is described in detail in S1 Appendix.

Because this procedure is unstable for small event rates, we do not use the alignment based

on standard errors for event rate 0.05. Instead, we choose sample sizes corresponding to the

EPV values in linear regression.
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The resulting sample sizes are displayed in Table 4. The numbers below the sample sizes

indicate the corresponding EPV values. For event rate 0.05, we will first include sample sizes

only up to 10,000 (EPV = 25) to save computation time. We expect the variable selection meth-

ods to behave similarly for both event rates (0.3 and 0.05). If we observe different behaviors for

event rate 0.05, we will include the additional sample sizes.

In S1 Appendix, we additionally report expected shrinkage factors for each setting, based

on sample size and R2 [32, 33].

3.3 Estimands and other targets (E)

As estimands, we consider the true regression coefficients of the data generating models. As fur-

ther targets, we are interested in model selection (e.g., whether the true model is selected) and

predictive performance of the selected models.

For the settings with linear functional forms, the regression coefficient estimands are the

coefficients β (respectively c β for logistic regression) as described in Sections 3.2.2 and 3.2.3.

For the settings with nonlinear effects, we cannot take the coefficients β(g) as defined in 3.2.4 as

estimands, because our linear/logistic regression models will not take nonlinear functional

forms into account and will thus be misspecified.

Instead, we consider two alternative versions of estimands based on two different linear

approximations of the nonlinear functions. Recall that we simulate the nonlinear composite

predictor as

b
ðgÞ
0
þ b

ðgÞ
1
g1ðX1Þ þ . . .þ b

ðgÞ
10
g10ðX10Þ:

Our first option for the estimands is β(proj):

b
ðgÞ
0
þ b

ðgÞ
1
g1ðX1Þ þ . . .þ b

ðgÞ
10
g10ðX10Þ

� b
ðprojÞ
0
þ b

ðprojÞ
1

X1 þ . . .þ b
ðprojÞ
10

X10;

where β(proj) are the coefficients obtained by projecting the true model with nonlinear func-

tional forms onto one with linear functional forms. This projection is approximated by using

the dataset DP as a “surrogate” for the population and fitting a linear/logistic regression model

with linear functional forms to the nonlinear composite predictor (for linear regression) or to

the outcome Y that was simulated based on nonlinear functional forms (for logistic

regression).

As the second option, we consider β(AS):

b
ðgÞ
0
þ b

ðgÞ
1
g1ðX1Þ þ . . .þ b

ðgÞ
10
g10ðX10Þ

� b
ðASÞ
0
þ b

ðASÞ
1

X1 þ . . .þ b
ðASÞ
10

X10;

where β(AS) are the “average slope” coefficients. In contrast to the “projected” regression

Table 4. Sample sizes and EPV values for linear and logistic regression.

linear regression n 100 200 400 500 800 1600 3200 6400

EPV 5 10 20 25 40 80 160 320

logistic regression, event rate 0.3 n 183 365 730 1667 1461 2922 5844 11,687

EPV 2.75 5.48 10.95 25 21.92 43.83 87.66 175.31

logistic regression, event rate 0.05 n 2000 4000 8000 10,000 – – – –

EPV 5 10 20 25 – – – –

https://doi.org/10.1371/journal.pone.0308543.t004
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coefficients, here each variable is considered individually. Each nonlinear effect gj(x) is approx-

imated as αjx, where αj is the average slope of gj weighted by the density of the j-th predictor

Xj.

More precisely, let fj be the density function of Xj as estimated from the NHANES data (i.e.,

the density function that is used as input for the simulation, see Section 3.2.1). We aim to

approximate the “average slope” integral

Z maxðXjÞ

minðXjÞ

g 0jðxÞfjðxÞdx

For this purpose, we construct a partition xj
1 ¼ minðXjÞ � . . . � xj

1001 ¼ maxðXjÞ of the

range of Xj with equal sub-interval lengths dj ¼ xj
kþ1 � xj

k, where min(Xj), max(Xj) are

obtained from the NHANES data. Then the integral is approximated by

aj ¼
X1000

k¼1

djg
0

jðx
j
kÞfjðx

j
kÞ

Finally, β(AS) is obtained by setting b
ðASÞ
j ¼ b

ðgÞ
j aj.

3.4 Methods (M)

3.4.1 Overview of variable selection methods. We include the following methods:

• Forward selection with AIC: starting from the model containing only the intercept, variables

are iteratively added to the model based on their capability to decrease the AIC when

included.

• Stepwise forward selection with AIC (i.e., forward selection with backward elimination

steps): like simple forward selection, this method starts from the intercept model and adds

variables based on the AIC. However, in each step, re-exclusion of already selected variables

is allowed, based on the capability to decrease the AIC when removed.

• Backward elimination with α = 0.05, with BIC, with AIC, and with α = 0.5: starting from the

global model, variables are iteratively removed, either based on their capability to decrease

the BIC/AIC when removed, or based on the p-values of their coefficients. We do not con-

sider a stepwise variant of backward elimination with forward selection steps, following the

recommendations of Royston and Sauerbrei [28, p. 32] who argue that allowing re-inclusion

of removed variables in backward elimination is rarely relevant, while allowing re-exclusion

of included variables may cause a notable difference for forward selection.

• Augmented backward elimination (ABE) with AIC [15]: backward elimination is combined

with the change-in-estimate criterion [34, 35]. A variable that would be removed in back-

ward elimination based on AIC may stay in the model if its removal would induce a large

change in the estimated regression coefficients of the other variables that are currently in the

model. As threshold for the standardized change-in-estimate, we choose τ = 0.05. We will

use the R package abe [36].

• Univariable selection with α = 0.05 and α = 0.20: a variable is selected if its regression coeffi-

cient in a univariable model is significant at level α. While many authors have advised

against using univariable selection [5, 37, 38], the method is still often used in practice,

which is why we include it in our simulation study.

PLOS ONE Evaluating variable selection methods for multivariable regression models

PLOS ONE | https://doi.org/10.1371/journal.pone.0308543 August 9, 2024 12 / 19

https://doi.org/10.1371/journal.pone.0308543


• Univariable selection with α = 0.20, followed by backward elimination with α = 0.05: fre-

quently, researchers use this combination instead of using only univariable selection or only

backward elimination [39, 40] However, the warnings against univariable selection still

apply to the combination method.

• Lasso [16]: a penalty on the coefficients is added to the OLS criterion (linear regression) or

the negative log-likelihood (logistic regression), causing shrinkage of the coefficients toward

zero and setting some of them to exactly zero.

• Relaxed Lasso [9, 17]: variables are selected with the Lasso, but the shrinkage of the coeffi-

cients of the selected variables is relaxed by refitting the model with the selected variables

without penalty.

• Adaptive Lasso [18]: first, the global linear/logistic model is fit, then a Lasso with variable-

specific weights for the penalty is estimated. The estimates from the first step serve to get the

variable-specific weights for the second step: the weights are calculated such that a variable

with larger regression coefficient in the first step is penalized less than a variable with smaller

regression coefficient.

For all variants of the Lasso, we will use the R package glmnet [41]. The complexity param-

eter λ will be tuned with 10-fold cross-validation (CV). As performance criterion for the pre-

diction on test sets during CV, we use the mean squared error for linear regression and

deviance for logistic regression. For the relaxed Lasso, we additionally consider tuning λ
with the BIC.

We also consider the global model with all variables.

3.4.2 Firth correction in logistic regression. In the models for logistic regression, separa-

tion may occur (i.e., perfect separation of events and non-events by a linear combination of

covariates), particularly for small to medium sample sizes and low event rates [42]. In this case,

at least one parameter estimate is infinite. While separation can be detected by linear program-

ming [43], we found that in practice, a simple and robust check can be performed by inspect-

ing the model standard errors of the regression coefficients. If at least one standard error is

extremely large, this indicates separation. A possible solution to the problem of separation is to

apply the Firth correction to obtain finite parameter estimates [42, 44].

In the simulation settings for logistic regression, we check for each individual simulated

dataset whether separation occurs. In the case of separation, we apply the Firth correction

(with the FLIC intercept correction [45] to obtain unbiased predictions), otherwise we use the

standard logistic regression. When Firth correction is applied, confidence intervals for the

regression coefficients are calculated based on the profile penalized likelihood, otherwise based

on the profile likelihood.

We describe our procedure to check for separation based on the model standard errors of

the coefficients in S1 Appendix.

3.5 Performance measures (P)

We organize the performance measures into three categories, based on which estimands/tar-

gets they pertain to. Formulas for all performance measures are given in S1 Appendix.

Performance measures for the regression coefficients as estimands include bias and

RMSE �
ffiffiffi
n
p

(root of expected mean squared error multiplied by
ffiffiffi
n
p

) of the estimated regres-

sion coefficients, and coverage and width �
ffiffiffi
n
p

of the 95% confidence intervals of the coeffi-

cients. (The RMSE of coefficients and width of confidence intervals are multiplied by
ffiffiffi
n
p

for

better comparability across sample sizes.) Moreover, we consider the power for predictors and
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the type 1 error for noise variables (i.e., whether the confidence interval for the respective

regression coefficient contains zero), as well as the selection rates of the variables (i.e., whether

the regression coefficients are zero): the true positive rate for predictors and the false positive
rate for noise variables. We also include Kendall’s τB [46] to measure the agreement of the esti-

mated ranking of variables (defined by ordering the variables based on absolute values of the

estimated standardized regression coefficients) with the “true” ranking of the variables

(defined by ordering the variables based on absolute values of the true standardized regression

coefficients).

For bias and RMSE �
ffiffiffi
n
p

of coefficients, coverage and width �
ffiffiffi
n
p

of confidence intervals,

and type 1 error/power for variables, the calculation can be performed unconditionally or con-

ditionally on selection. In the unconditional approach, the coefficients and their confidence

limits for non-selected variables are set to zero, while the conditional approach includes only

simulation runs where the specific variable is selected.

Performance measures for model selection as target include the selection rate of the true
model consisting exactly of the ten predictors, the selection rate of an “over-selection” model
which we define as a model including all predictors as well as at least one noise variable (previ-

ously called an “inflated” model [15]), and the selection rate of any “under-selection” model
defined as a model not containing all predictors but possibly including noise variables (previ-

ously called a “biased” model [15]).

Finally, we use multiple performance measures for prediction. Predictive performance is

evaluated on a large test dataset (ntest = 10, 000). One test dataset is simulated for each simula-

tion setting. Prediction is assessed locally, i.e., at each value of the true linear predictor (local
bias and local RMSE �

ffiffiffi
n
p

), as well as globally with the global RMSE �
ffiffiffi
n
p

(i.e., the root of the

expected mean squared error of the estimated vs. true linear predictor multiplied by
ffiffiffi
n
p

) and

the global MAE (i.e., the expected median absolute error of the estimated vs. true linear predic-

tor). For logistic regression, global predictive performance is additionally evaluated with the

AUC, i.e., area under the receiver operating characteristic curve. For both linear and logistic

regression, the calibration of the predictions is measured with the integrated calibration index
(ICI) [47]. The ICI is defined as the mean distance of the predicted outcomes/probabilities to

the corresponding points on the calibration curve.

The performance measures for the regression coefficients and for model selection are pri-

marily relevant for descriptive models, while performance measures for predictive perfor-

mance are mainly relevant for prediction models. However, a descriptive model may also be

suitable for prediction; therefore, performance measures for prediction could also be relevant

for descriptive modeling. Vice versa, in prediction models, aspects such as interpretability, fair-

ness etc. often play an important role; researchers might thus consider performance measures

such as bias of coefficients also for prediction models.

3.6 Monte Carlo errors and number of simulation runs

The number of simulation repetitions nsim must be chosen large enough to estimate the perfor-

mance measures with suitable accuracy, i.e., the Monte Carlo errors of the measures must be

acceptable. We use the coverage of the confidence intervals as reference measure. The Monte

Carlo standard error for the coverage can be calculated with the formula

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dcoverð1 � dcoverÞ

nsim

s

;

where dcover is the coverage estimated via simulation [19]. If nsim = 2000 and dcover ¼ 95%, the
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Monte Carlo SE is about 0.5%. If nsim = 2000 and dcover ¼ 50% (the worst-case scenario), the

Monte Carlo SE is about 1%, which is still acceptable. Therefore, we plan to use nsim = 2000 in

our simulation for all settings (provided that this will be computationally feasible). We will

then calculate the Monte Carlo SEs for all performance measures.

4 Code review

To ensure reproducibility, as well as readability, the code will be checked by another researcher

(a “code reviewer”) who works at the same institute as the first, second and last author of this

protocol, but was not involved in planning the study. After writing the code, the first author

(T.U.) will hand over the code to the code reviewer, together with instructions for running the

code as well as some partial results (using less than the full nsim = 2000 repetitions). The code

reviewer will then check the plausibility of the partial results and provide feedback on the sim-

ulation code, focusing on a) data generation, b) the implementation of the compared models,

and c) the implementation of the performance measures applied to these models. Once T.U.

and the code reviewer have agreed upon a final version of the code, T.U. will re-run the partial

results, and the code reviewer will check the complete computational reproducibility by re-

running the code on another machine. This check for reproducibility is done on the partial

results as the generation of the final results is expected to require large amounts of computa-

tional resources. Once the reproducibility check has successfully concluded, T.U. will perform

the full nsim = 2000 repetitions to generate the final results.

5 Final remarks

Our simulation study will enable researchers to better understand the consequences of variable

selection, and will clarify differences in the performance of different selection methods

depending on the considered scenarios. To make the results of the study more accessible and

interpretable, we plan to display all results in an interactive web app (Shiny app) that will be

published alongside the main paper. We will also make our code available on a Git repository,

and will specify random seeds to ensure reproducibility of the results.

The performance measures for our study (Section 3.5) are defined as expected values and

probabilities. Their estimation by simulation thus always involves taking the mean over (a part

of) the simulation repetitions. However, if one only calculates the mean over the repetitions,

one might miss relevant properties of the distribution of the values over the simulation repeti-

tions. We will thus use distribution plots and correlation analyses to evaluate the simulation

results in more detail [19]. Moreover, we will analyze how many variables were selected by

each variable selection method. We did not include model size as a performance measure in

Section 3.5 because there is no clear target value and smaller/larger values are not automati-

cally better/worse (a smaller model size is preferable in some applications, but might be less

relevant in others). A specific focus on model size (e.g., comparing different variable selection

methods under constraints w.r.t. the number of chosen variables) would require a different

study design.

Multicollinearity is an important topic in the context of variable selection. Data-driven vari-

able selection methods tend to perform worse if there is a high degree of correlation between

the predictors, and their performance will improve the less the predictors are correlated with

each other. Before regression analysis is performed in an applied study, the correlations

between the independent variables should be checked during initial data analysis [48]. For our

simulation study, we have carefully chosen true correlations between the independent vari-

ables based on a real correlation matrix from NHANES data. As mentioned in Section 3.2.1,

S2 Fig shows the coefficients of determination R2
j for the regression of each variable Xj on all
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other respective variables Xl, l = 1, . . ., 20, l 6¼ j. The R2
j values range from 0 to 0.56, demon-

strating differing degrees of dependence between the predictors. These values will be consid-

ered when interpreting the simulation results.

In future work, it would be interesting to consider various extensions of our simulation.

For example, while we focus on linear and logistic regression in the present protocol, data-

driven variable selection is also often used in the context of survival analysis. We plan to con-

duct a further simulation study comparing different data-driven variable selection methods for

Cox regression and the accelerated failure time model.

In the present study, we include several settings where all predictors have true nonlinear
functional forms, but we nevertheless fit all models with linear functional forms; this mimics

the frequent misspecification of models in practice. Generally, when fitting a regression model

with linear effects, it is advisable to check for misspecification by analyzing the residuals. If

misspecification is only mild, then a model with linear effects might still be justifiable. If mis-

specification is too severe, functional form selection can be performed to account for nonlinear

effects, e.g., with spline-based approaches. In future work, our study could be extended by con-

sidering the combination of variable selection and functional form selection, which is a com-

plex issue [39].

We focus on low-dimensional data in our study. Future studies could compare variable

selection methods for high-dimensional data. Finally, our study considers variable selection in

a frequentist framework. Future simulation studies could also evaluate Bayesian methods for

variable selection.
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