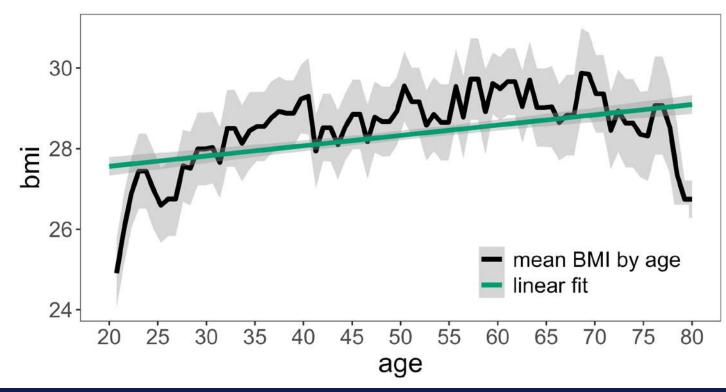
A categorization and comparison of performance measures for estimated nonlinear associations with an outcome

Theresa Ullmann, Georg Heinze, Michal Abrahamowicz, Aris Perperoglou, Willi Sauerbrei, Matthias Schmid, Daniela Dunkler, for TG2 of the STRATOS initative

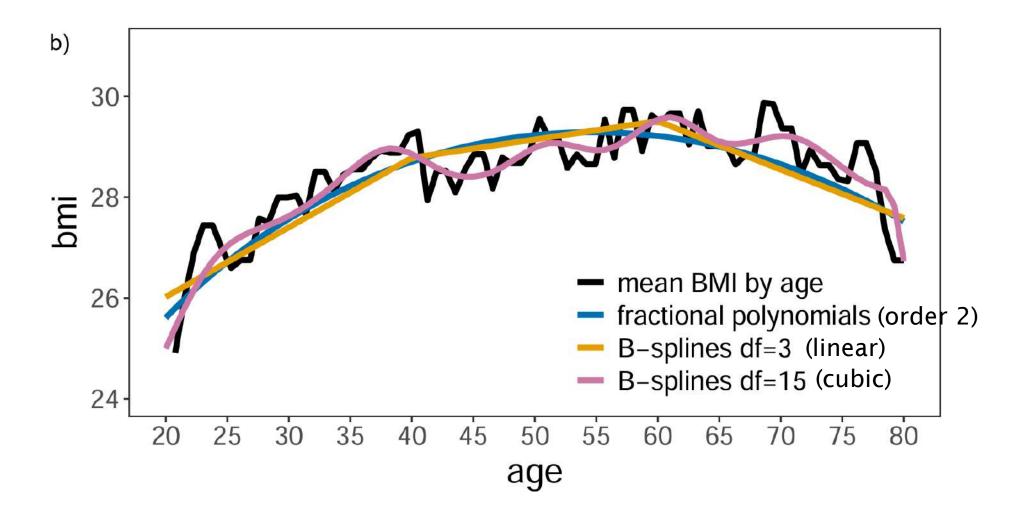
Presenter: Georg Heinze Institute of Clinical Biometrics, Center for Medical Data Science, Medical University of Vienna

Background & motivation

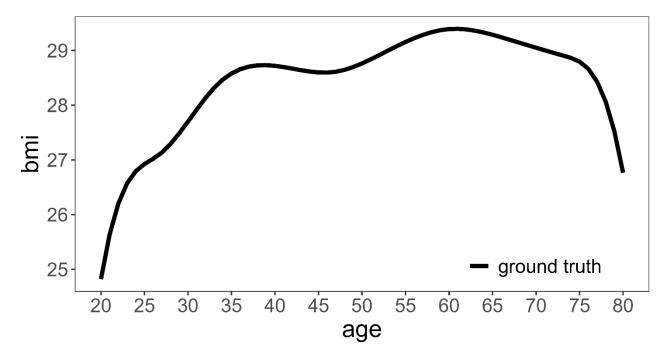
- Consider the association of BMI with age (NHANES)
- How to separate systematic from unsystematic variation?
- Linear model probably a poor smoother



More smoothers...



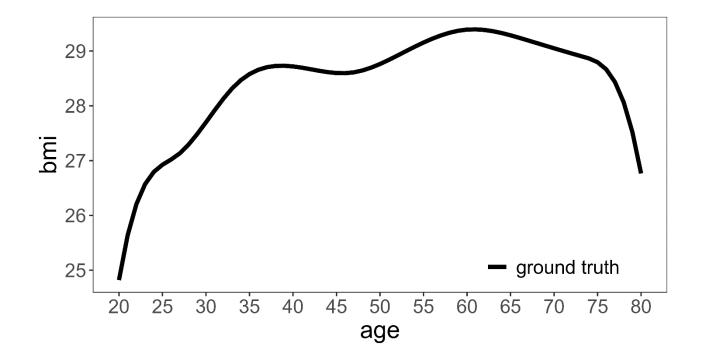
- Aim: to compare the performance of different methods of nonlinear modeling
- Data generation mechanism:



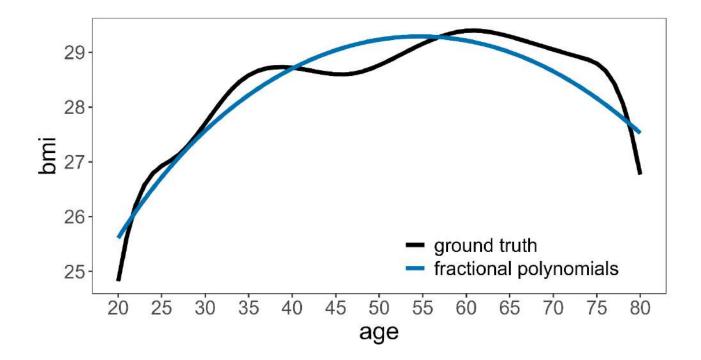
• Estimand: predicted BMI

ADEMP: Morris et al, StatMed 2019

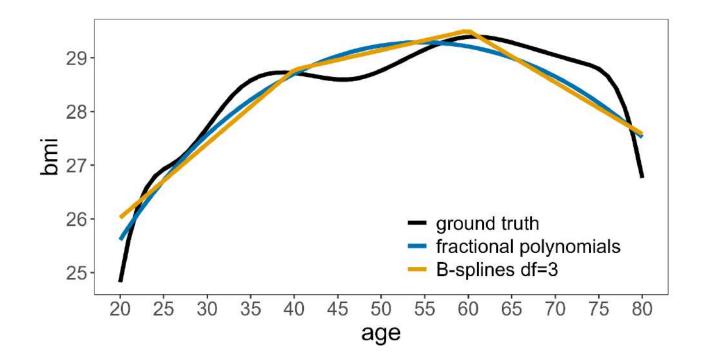
• Methods:



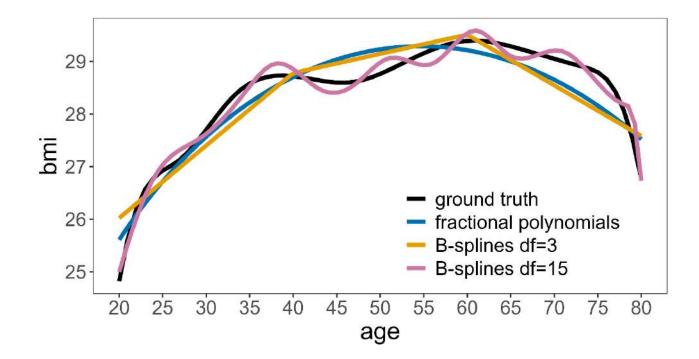
• Methods:



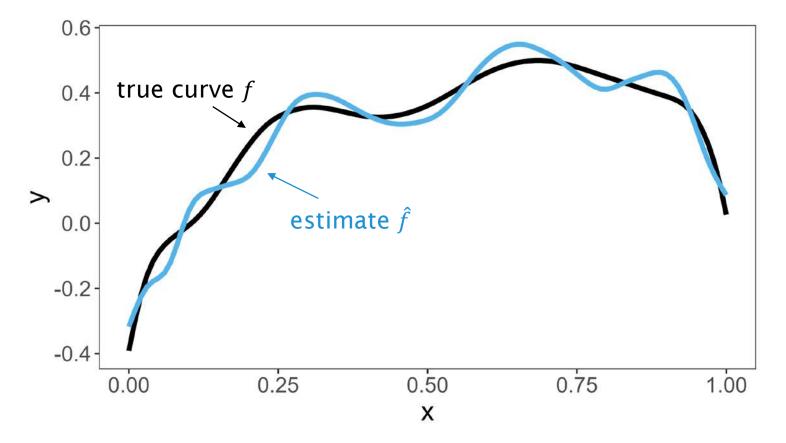
• Methods:



• Methods:



• Performance measures: compare estimated with true curve



• Performance measures:

 $\int_{F_X^{-1}(0.01)}^{F_X^{-1}(0.99)} |\hat{f}(x) - f(x)|\hat{p}(x)dx \quad \text{Buchholz et al. (2014) (see also Govindarajulu et al., 2007)}$

• Performance measures:

 $\int_{F_X^{-1}(0.01)}^{F_X^{-1}(0.99)} |\hat{f}(x) - f(x)|\hat{p}(x)dx$ Buchholz et al. (2014) (see also Govindarajulu et al., 2007)

$$\int_{F_X^{-1}(0.05)}^{F_X^{-1}(0.95)} \left(\hat{f}'(x) - f'(x)\right)^2 \mathrm{d}F_X(x) \quad \text{Binder et al. (2011)}$$

• Performance measures:

Region of interest: 1st to 99th percentile of F_{χ}

 $\int_{F_X^{-1}(0.01)}^{F_X^{-1}(0.99)} |\hat{f}(x) - f(x)|\hat{p}(x)dx$ Buchholz et al. (2014) (see also Govindarajulu et al., 2007)

Region of interest: 5th to 95th percentile of F_{χ}

$$\int_{F_X^{-1}(0.05)}^{F_X^{-1}(0.95)} \left(\hat{f}'(x) - f'(x)\right)^2 \mathrm{d}F_X(x) \quad \text{Binder et al. (2011)}$$

• Performance measures:

Absolute loss

 $\int_{F_X^{-1}(0.01)}^{F_X^{-1}(0.99)} |\hat{f}(x) - f(x)| \hat{p}(x) dx \qquad \text{Buchholz et al. (2014) (see also Govindarajulu et al., 2007)}$

$$\int_{F_X^{-1}(0.05)}^{F_X^{-1}(0.95)} \left(\hat{f}'(x) - f'(x)\right)^2 \mathrm{d}F_X(x) \quad \text{Binder et al. (2011)}$$

Quadratic loss

• Performance measures:

function

 $\int_{F_X^{-1}(0.09)}^{F_X^{-1}(0.99)} |\hat{f}(x) - f(x)| \hat{p}(x) dx \qquad \text{Buchholz et al. (2014) (see also Govindarajulu et al., 2007)}$

$$\int_{F_X^{-1}(0.05)}^{F_X^{-1}(0.95)} \left(\hat{f}'(x) - f'(x)\right)^2 \mathrm{d}F_X(x) \quad \text{Binder et al. (2011)}$$

first derivative

• Performance measures:

Integral weighted with precision

 $\int_{F_X^{-1}(0.01)}^{F_X^{-1}(0.99)} |\hat{f}(x) - f(x)| \hat{p}(x) dx \qquad \text{Buchholz et al. (2014) (see also Govindarajulu et al., 2007)}$

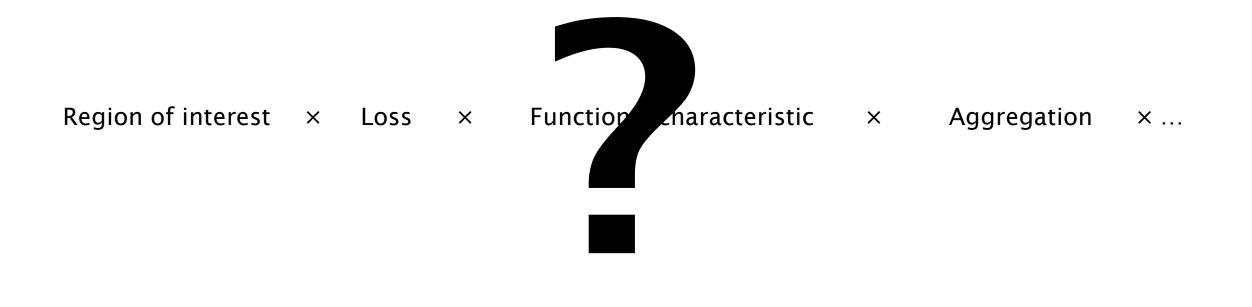
$$\int_{F_X^{-1}(0.05)}^{F_X^{-1}(0.95)} \left(\hat{f}'(x) - f'(x)\right)^2 \mathrm{d}F_X(x) \quad \text{Binder et al. (2011)}$$

Integral over distribution of X

• Performance measures:

Region of interest \times Loss \times Functional characteristic \times Aggregation $\times \dots$

• Performance measures:



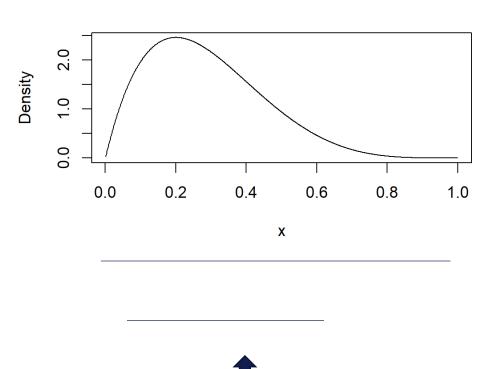
Aims of this project

- To provide a comprehensive characterization of performance measures to be used in methods comparison studies
 - Define aspects of such measures
 - Suggest sensible combinations of choices for each of the aspects
- To demonstrate with simple illustrative examples and some hypothetical ,methods'
 - How the resulting performance measures behave
 - That different performance measures capture different aspects of behaviour

The aspects:

• Localization: Where are we looking at?

- The full range of values (global)
- A subrange (region)
- A single value (point)



The aspects: 0.15 0.10 Function • Functional characteristic: 0.05 • The function itself • First derivative 00.0 • Second derivative 0.2 0.4 0.6 0.8 0.0 X 2 0.2 -0.0 Second derivative First derivative 0 -0.2 $\overline{\gamma}$ -0.4 -0.6 2 -0.8 ç -1.0 4 0.2 0.8 1.0 0.0 0.4 0.6 0.0 0.2 0.4 0.8 0.6 х х

UU OF VIENNA

Georg Heinze DAGStat 2025 1.0

1.0

The aspects:

- Type of loss:
 - Difference: $m(x) = \hat{f}(x) f(x)$
 - Absolute difference: $m(x) = |\hat{f}(x) f(x)|$
 - Quadratic difference: $m(x) = (\hat{f}(x) f(x))^2$
 - ϵ -level accuracy: $m(x) = I(|\hat{f}(x) f(x)| \le \epsilon)$

If we consider the range or a region:

- Axis of aggregation:
 - Y
 - Integration over dx: $\int m(x) dx$
 - Integration over dF(x) [=expected value): $\int m(x) dF(x)$
 - X
 - Location of maximum/minimum $f(x) (= argmax(\hat{f}(x)), argmin(\hat{f}(x)))$
 - Number of roots (e.g. of $\hat{f}'(x)$)

Select the performance measure

Localization:

RangePoint

● Y ○ X Type o

Functional characteristic:

f(x)

⊖ f'(x)

○ f"(x)

Loss:

O Difference

○ Absolute

○ Squared

Epsilon-level
 accuracy

rinio et aggi eganetit
• Y
ΟX
Type of aggregation:
\bigcirc Integration over dx
\bigcirc Expectation over dF_X
\bigcirc Quantile with respect to F_X
⊖ Maximum
O Minimum
Scope of aggregration:
\bigcirc whole range $[0,1]$

Axis of aggregation:

) subrange $[F_X^{-1}(0.05), F_X^{-1}(0.95)]$

 $= \int \left(\hat{f}(x) - f(x) \right) dx$

"mean deviation"

Localization:	Axis of aggregation:
Range	• Y
⊖ Point	\bigcirc X
Functional	Type of aggregation:
characteristic:) Integration over dx
● f(x)	\bigcirc Expectation over dF_X
⊖ f'(x)	\bigcirc Quantile with respect to F_X
⊖ f''(x)	⊖ Maximum
Loss:	O Minimum
O Difference	Scope of aggregration:
Absolute	\bigcirc whole range $[0,1]$
⊖ Squared	

$=\int |\hat{f}(x) - f(x)| dx$

"mean absolute deviation"

Select the performance measure

Localization:

Range

○ Point

Functional characteristic:

● f(x)

○ **f**(x)

O **f''(x)**

Loss:

○ Difference

⊖ Absolute

Squared

Epsilon-level
 accuracy

Axis of aggregation: **O**Y OX Type of aggregation: \bigcirc Integration over dx \bigcirc Expectation over dF_X \bigcirc Quantile with respect to F_X ○ Maximum O Minimum Scope of aggregration: \bigcirc whole range [0,1]⊖ subrange $[F_{\chi}^{-1}(0.05), F_{\chi}^{-1}(0.95)]$

 $= \int \left(\hat{f}(x) - f(x) \right)^2 dF(x)$

", expected (over F(x)) squared deviation"

Localization:	x	
⊖ Range	0,75	
Point		
Functional		
characteristic:		
f(x)		
⊖ f'(x)		
○ f'(x)		
Loss:		
O Difference		
⊖ Absolute		
⊖ Squared		
Epsilon-level		
accuracy		
epsilon		
0,05		

 $= I(\left|\hat{f}(0.75) - f(0.75)\right| \le 0.05)$

", within $f(x) \pm 0.05$ at x = 0.75"

Select the performance measure

Localization:

Range

○ Point

Functional characteristic:

○ f(x)

○ f'(x)

● f''(x)

Loss:

○ Difference

⊖ Absolute

O Squared

 Epsilon-level accuracy

forn	nance measure
Ах	is of aggregation:
\bigcirc	Y
0	Х
Ту	pe of aggregation:
\bigcirc	Integration over dx
0	Expectation over dF_X
0	Quantile with respect to ${\cal F}_X$
\bigcirc	Maximum
0	Minimum
Sc	ope of aggregration:
\bigcirc	whole range $[0,1]$
•	subrange $[F_X^{-1}(0.05),F_X^{-1}(0.95)]$

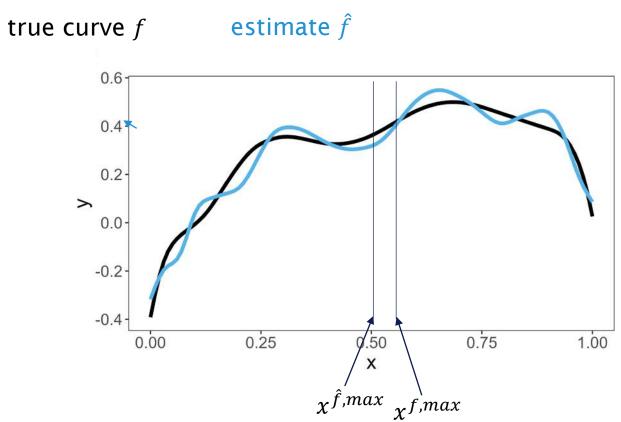
 $= \int_{Q05}^{Q95} \left(\hat{f}''(x) - f''(x) \right)^2 dx$

"wiggliness"

Localization: Range	Axis of aggregation:
O Point	ΟY
Functional	• X
characteristic:	Type of
f(x)	aggregation:
⊖ f'(x)	\bigcirc Number of roots
⊖ f"(x)	Location of maximum
Loss:	O Location of
Difference	minimum
O Absolute	Scope of
O Squared	aggregration:
O Epsilon-	 whole range
level	[0,1]
accuracy	
	\bigcirc subrange $[F_x^{-1}(0.05), F_x^{-1}(0.95)]$

MEDICAL UNIVERSITY OF VIENNA "Deviation of location of maximum":

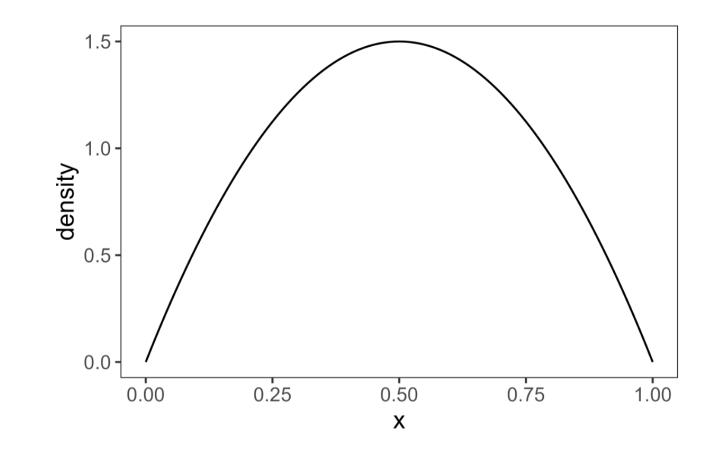
$$x^{\hat{f},max} - x^{f,max}$$

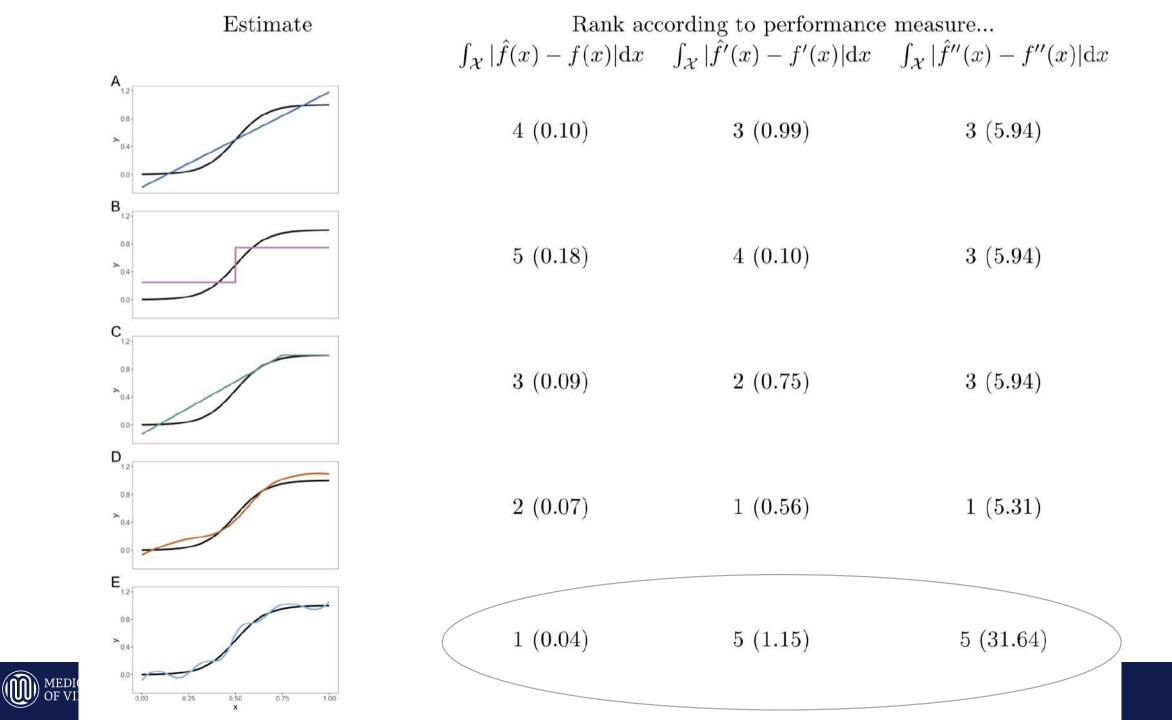


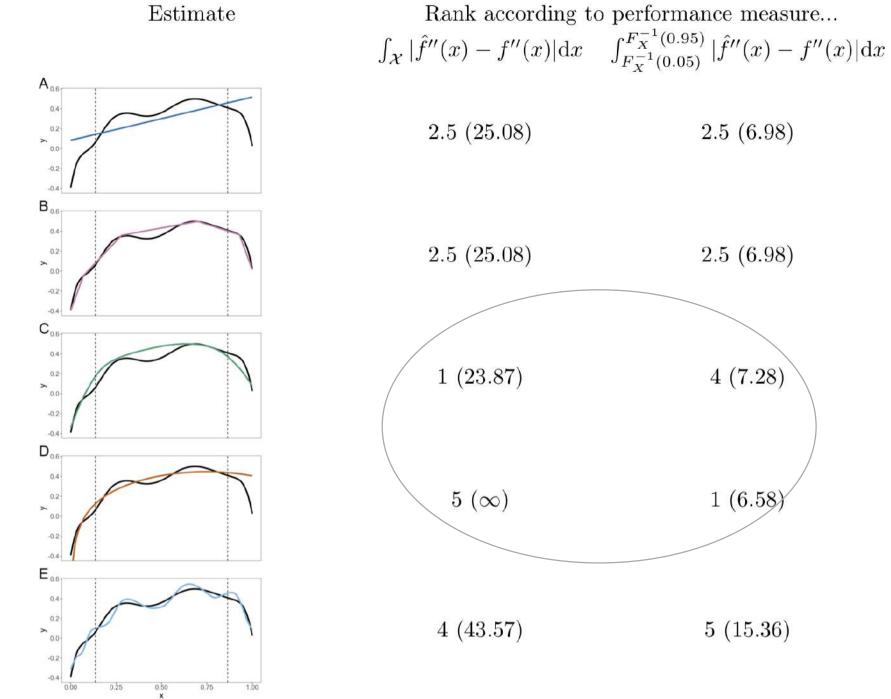
Some examples

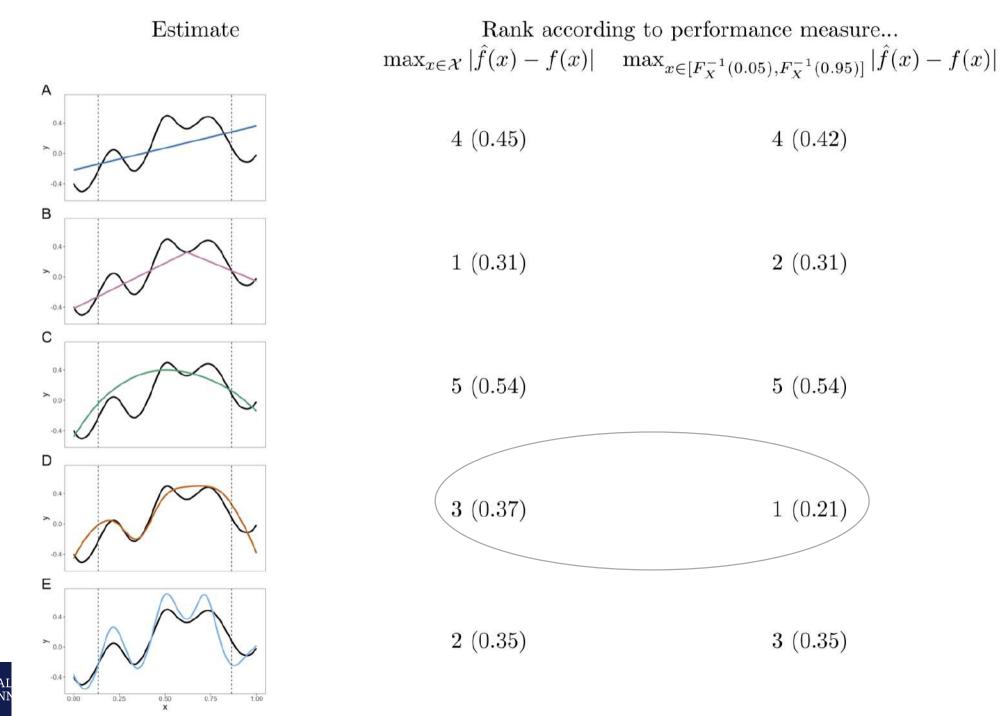
 In these examples, we consider x distributed as Beta(2,2)

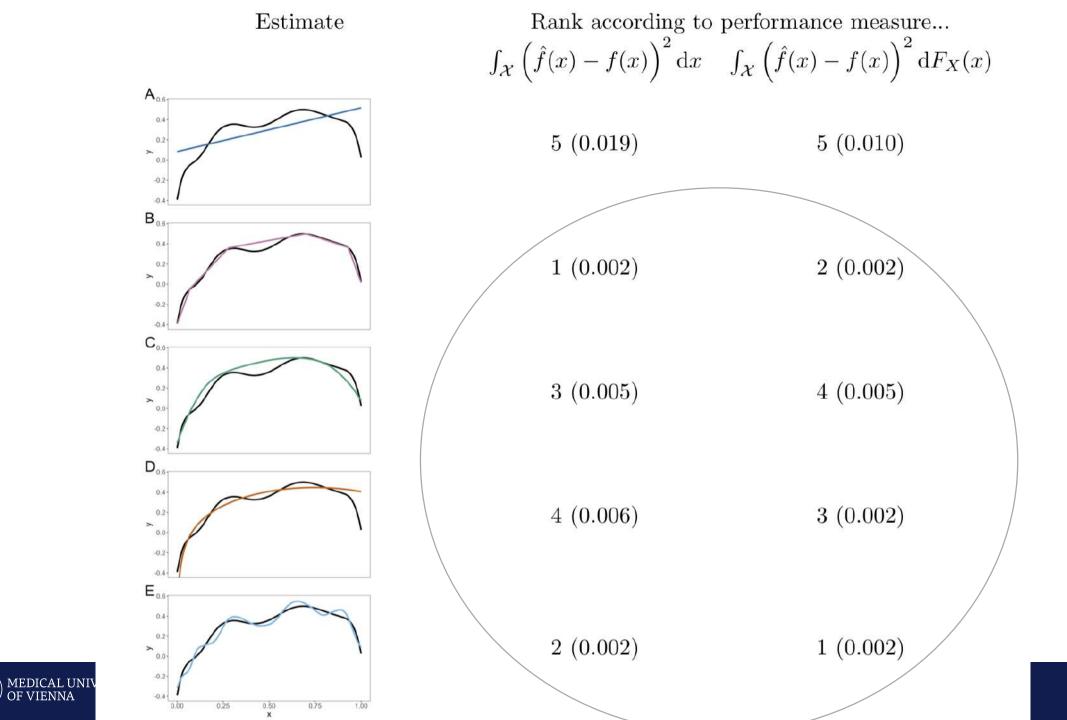
- In some examples, we will nevertheless perform the integration over dx
- In others
 we will integrate over
 dF(x)

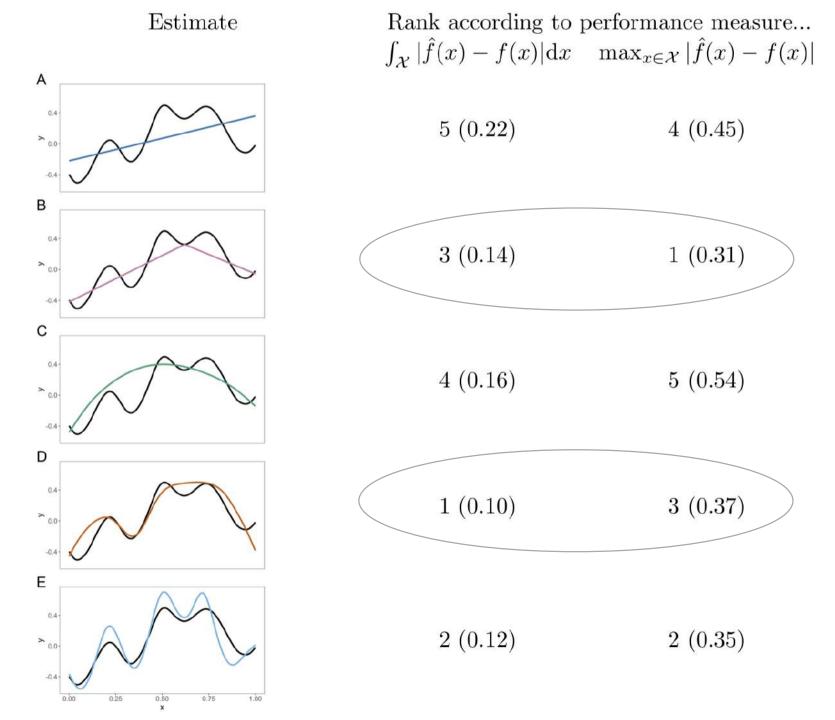


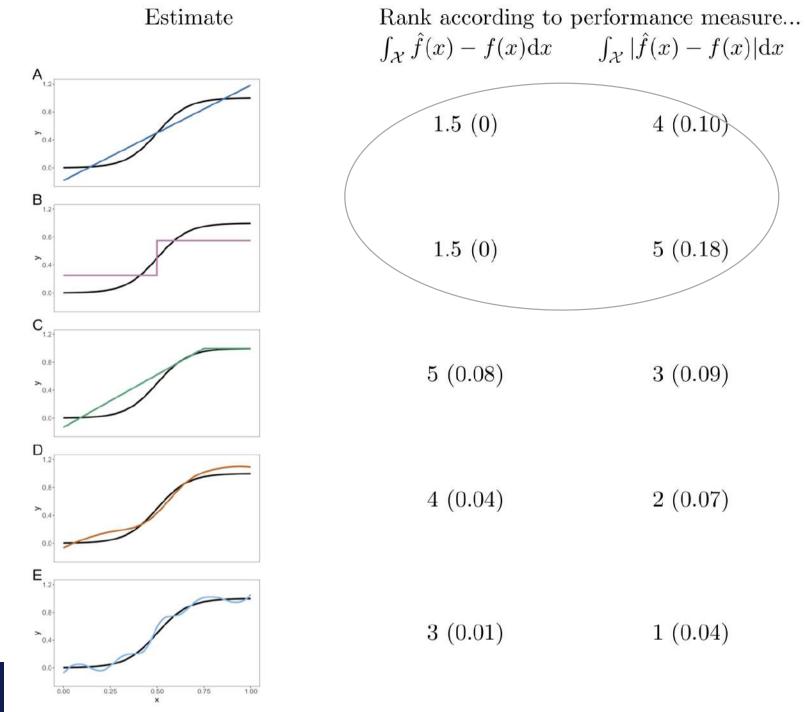




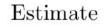


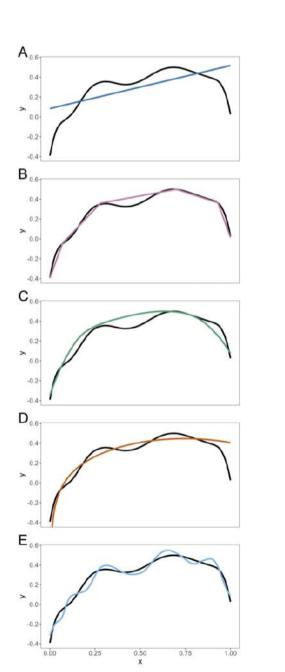




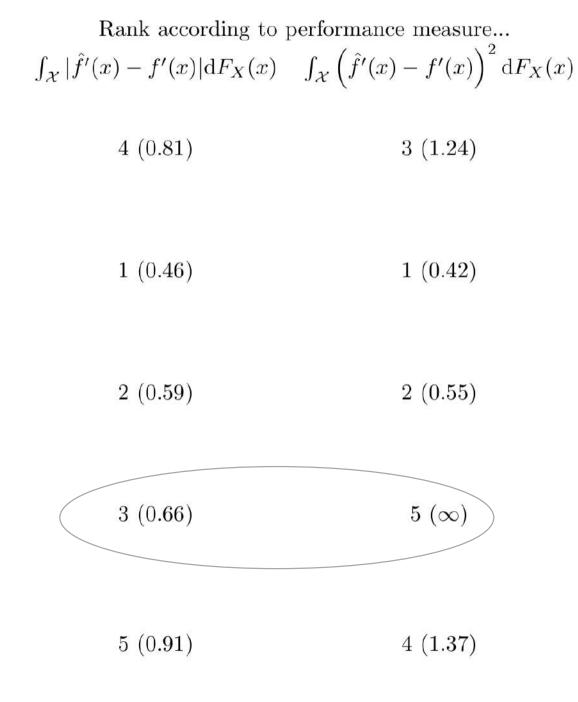


MEDICAL UNIVERSITY OF VIENNA



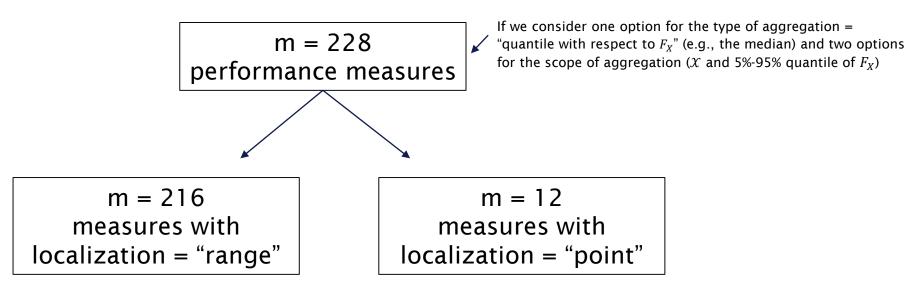


) MEDICAL UNIVE OF VIENNA



How many measures are there?

According to our categorization, there are...



 \rightarrow How to choose a **smaller set** of performance measures for a simulation study?

→ Select those that capture different features (see examples!)

Aggregation over simulated data sets

- Our performance measures will summarize the quality of the fitted line in 1 simulated data set
- The analyst still has to decide whether
 - Expected value of the performance measure
 - Variance of the performance measure
 - or other population quantity is of interest (e.g., median, *p*th quantile etc.)
- If there is a clear optimum value (e.g. expected difference [=bias] should be 0), one could also construct a combination of bias + variance
 - Obvious: MSE = bias² + variance

Applications

- Univariate models: unadjusted association
- Models where the association of interest is adjusted for a (fixed) set of adjustment variables (descriptive-associational)
- Evaluation over a two-dimensional grid on X₁, X₂
- Prediction/calibration:
 - agreement of predicted and observed values
 - agreement of predicted and true linear predictor values
- Extensions: comparison to ,null' instead of true f(x)
 - Number of roots
 - General wiggliness

Preprint is available on Arxiv

Ullmann, T., Heinze, G., Abrahamowicz, M., Perperoglou, A., Sauerbrei, W., Schmid, M., Dunkler, D., for TG2 of the Stratos initiative. (2025). A categorization of performance measures for estimated non-linear associations between an outcome and continuous predictors (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2503.16981

References

Binder, H., Sauerbrei, W., & Royston, P. (2011). Multivariable model-building with continuous covariates: 1. Performance measures and simulation design. Technical report.

Buchholz, A., Sauerbrei, W., & Royston, P. (2014). A measure for assessing functions of time-varying effects in survival analysis. Open Journal of Statistics, 4(11), 977998

Govindarajulu, U. S., Spiegelman, D., Thurston, S. W., Ganguli, B., & Eisen, E. A. (2007). Comparing smoothing techniques in Cox models for exposure-response relationships. Statistics in Medicine, 26(20), 3735-3752.

Morris, T.P., White, I.R., Crowther, M.J., 2019. Using simulation studies to evaluate statistical methods. Statistics in Medicine 38, 2074–2102. <u>https://doi.org/10.1002/sim.8086</u>

