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Introduction
In September 2024, the STRengthening Analytical Thinking for 
Observational Studies (STRATOS) initiative brought together 55 
researchers for a one-week workshop at the Lorentz Center in 
Leiden, the Netherlands. Presentations and working sessions were 
organised around key themes of observational research methods 
where STRATOS aims to bring guidance to applied researchers. 
We summarise the Workshop’s discussions on the key theme 
‘Estimands.’

Estimands as a bridge between statistics and its 
application 
Successful application of statistics in empirical sciences requires 
appropriate study design, data collection procedures and statistical 
method(s), which should all be steered by the research question. 
A clearly specified research question grounded in subject-matter 
knowledge is of the utmost importance. The estimand translates 
the research question into a precise unequivocal quantity (or quan-
tities) of interest that we aim to estimate from data [1] .

Clearly defined estimands serve as a communication tool among 
and between statisticians and non-statisticians, and reduce the risk 
of misinterpretation of results by providing clarity to the reported 
effect(s) and the population(s) for which they hold [2] .

Model-free estimands
Traditionally, estimands have been (implicitly) defined as param-
eters in parametric statistical models. However, as Breiman [3] 
highlighted over two decades ago, statistical modelling relies on a 
priori assumptions about the true data generating model that may 

not be satisfied, potentially leading to questionable or irrelevant 
conclusions.

Consequently, there is a growing interest in moving away from mod-
el-based estimands and defining model-free estimands in causal infer-
ence [4, 5] . While statistical modelling will remain needed for esti-
mating estimands and delivering insight into complex data structures, 
it has been argued that the estimand itself should not be defined with 
reference to particular statistical assumptions, since these may often 
not be correct and cannot be assessed at the study design stage [6] .

Are estimands a new phenomenon? Defining estimands and assess-
ing the plausibility of identification assumptions (i.e., conditions 
needed to estimate estimands) are not new to statistical practice. 
For example, randomized controlled trials (RCTs) have been using 
frameworks like Population, Intervention, Comparison, Outcome, 
(Time) (PICO(T)) for a long time. However, PICO(T) may lack the 
precision for an unequivocal estimand definition.

There are comprehensive textbooks on causal inference that 
describe how the estimand(s) may be defined using mathematical 
notation (e.g., potential outcomes or counterfactuals) and how to 
assess the plausibility of identification assumptions in practice [7-9] 
. However, textbooks and the statistically oriented causal inference 
literature may not be accessible to all applied researchers.

Several frameworks that may be used to define estimands with 
the applied researcher in mind have been developed. These frame-
works may be useful for providing (1) guidance without requiring 
in-depth knowledge of the vast literature on causal inference 
that may be difficult to navigate for the novice; and (2) clarity and 
standardization in the reporting of empirical research, which may 
mitigate potential biases and misinterpretations. 

Defining estimands: Insights from four frameworks
Among frameworks that may be used to define estimands, four 
were discussed at the Workshop (Box). In earlier work, the 
STRATOS Causal Inference Topic Group developed eight steps for 
the empirical evaluation of research questions [1] . They outline 
a principled approach encouraging researchers to think carefully 
about what they are estimating and to be transparent in reporting, 
including underlying assumptions.

The Causal Roadmap (CR) provides a seven-step process for caus-
al inference from defining the estimand to identifying and estimating 
it [10]. A key objective of the CR is to ensure a well-specified esti-
mand, which can be rewritten in terms of the observed data given 
appropriate identification assumptions, reflecting both the research 
question and challenges in the data.

Target Trial Emulation (TTE) provides a structured process for 
designing an observational study when comparing treatments by 
specifying the ideal “target trial” [11] . The “target trial” refers to 
a hypothetical RCT one would ideally design to answer the study 
question if there were no ethical or financial constraints.

Lastly, the addendum to the ICH E9 harmonised guideline on 
statistical principles for clinical trials (i.e., ICH E9(R1) addendum) 
presents five key attributes of the estimand in an RCT [12] . In par-
ticular, the ICH E9(R1) addendum emphasizes intercurrent events 
which are post-randomization events (e.g., treatment switching) 
that affect the outcome and/or the collection of the outcome.

There is a clear overlap between these frameworks, but they vary 
in scope and focus, and therefore, may result in estimands being 
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defined differently or may not be appropriate to address all types 
of research questions. For example, TTE and the ICH E9(R1) 
addendum focus on clinical studies comparing treatments, while 
the other two frameworks enable the definition of estimands for a 
wider range of causal questions.

It is of interest to further assess how these frameworks may com-
plement, supplement, or conflict with each other. The STRATOS 
initiative aims to address this gap by synthesizing the extensive 
literature on these four frameworks (and potentially others) and 
by providing practical recommendations to applied researchers for 
effectively defining and using estimands.

Avoiding nonsensical estimands
The general recommended order in the estimand frameworks is 
to first define the estimand(s) and then delineate the assumptions 
needed to identify them; subsequently, specify how to estimate the 
estimand(s) from the data; and then start the actual data analysis. 
Identification assumptions include common assumptions such 
as consistency, no unmeasured confounding (i.e., (conditional) 
exchangeability) and positivity [13]. While identification assump-
tions may seem plausible by design or given a conceptual (struc-
tural) model, they are usually not empirically verifiable. Therefore, 
there must be a feedback loop with subject-matter experts assess-
ing whether relevant identification assumptions are plausible for 
the setting at hand. This may ultimately avoid targeting nonsensical 
estimands; and reporting estimates with limited to no applicability 
in the real world [5]. 

Estimands are not just for causal effects
Having a well-defined inferential goal is not unique to the context 
of quantifying causal effects of treatments or exposures. The need 
for avoiding ambiguity and misinterpretation of results equally 
holds for studies with a descriptive, predictive or diagnostic aim. 
Therefore, estimands can also prove to be an extremely valuable 
tool in these types of studies.

For instance, recent work points out how age adjustment in 
descriptive studies may change the descriptive estimand from 
“What is the burden of disease in different racial/ethnic groups?” 
to “What would be the burden of disease in different racial/ethnic 
groups if they had the same age distribution as a chosen reference 
population?” [14]. Which one of these two is appropriate depends 
on the descriptive research question, and this research question 
needs to be unequivocal before we can decide on the appropriate 
analysis.

Similarly, misalignment between the intended use of prediction 
models and how the models handle treatments received by indi-
viduals in the development/training data has formed the basis of 
the prediction estimand framework [15-18]. For example, imagine 
a prediction model built on historical data where patients were 
treated according to a certain policy. If the treatment policy has 
evolved, the model might not be applicable in a contemporary 
setting.

In addition, the prediction estimand framework helps to clarify 
whether predictions are suitable for informing treatment decisions. 

Lastly, in diagnostic studies, a well-defined estimand may ensure 
alignment between the target population (i.e., individuals for whom 
the diagnostic test is intended to be used in routine clinical prac-
tice) and the study population (i.e., individuals that are included in 
the study, and received both the diagnostic test under evaluation 
and the reference (“gold”) standard test).

Conclusion
In conclusion, the size of the literature on estimands can be over-
whelming even for the experienced statistician. We hope the sum-
mary of the Workshop’s discussions on ‘Estimands’ and planned 
work from these discussions will chart a practical way forward 
through the literature and guide those conducting observation-
al studies on the estimand frameworks. Interested readers are 
encouraged to visit the STRATOS initiative website for updates on 
this work (https://stratos-initiative.org).

Components of four frameworks to define estimands

STRATOS Causal Inference Topic Group
• Define the treatment that corresponds to the research question(s)
• Define the outcome that corresponds to the research question(s)
• Define the population(s) of interest
• Formalize the research question in terms of potential outcomes
• Specify the estimand as a contrast between potential outcome 

distributions
• State underlying assumptions validating the causal effect estimation
• Estimate the estimand
• Evaluate the validity of assumptions & perform sensitivity analyses

Causal Roadmap
• Causal question, causal model, and causal estimand
• Describe the observed data
• Assess identifiability: Can the proposed study provide an answer 

to our causal question?
• Define the statistical estimand
• Choose a statistical model and estimator that respects available 

knowledge and uncertainty based on statistical properties
• Specify a procedure for sensitivity analysis
• Compare alternative complete analytic study designs

Target Trial Emulation
• Eligibility criteria
• Treatment strategies
• Assignment procedures
• Follow-up period
• Causal contrasts of interest
• Analysis plan

ICH E9(R1) Addendum
• Population
• Treatment
• Variable [outcome]
• (Population-level) summary measure
• Intercurrent events
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