

A blinded, controlled comparison of methods for adjusting for covariate measurement error in regression modelling

A joint project of TG2 (Selection of Variables and Functional Forms) and TG4 (Measurement Error and Misclassification) of the STRATOS Initiative

Members of the TG2-4 Subgroup

TG2	TG4	Affiliates
Michal Abrahamowicz	Kevin Dodd	Brian Barrett
Steve Ferreira Guerra	Raymond Carroll	Matthew Chaloux
Frank Harrell	Laurence Freedman	Nadja Klein
Aris Perperoglou	Paul Gustafson	Amer Moosa
Willi Sauerbrei	Victor Kipnis	Mohammed Sedki
	Douglas Midthune	
	Anne Thiébaut	

Conflict of interest disclosure

I have no current or past relationships with commercial entities

- Neutral Comparison Simulation Studies
- TG2 TG4 Partnership / Functional Forms & Measurement Error
- The project protocol
- Results of Stages 1 & 2
- Next steps
- References

Neutral Comparison Studies

- STRATOS aims to provide guidance on which statistical methods should be used for various types of observational studies
- This guidance requires reliable evidence on the comparative advantages of different competing methods
- Often this evidence is provided by simulation studies
- Biostatisticians teach clinicians the importance of unbiased, controlled evaluation of treatments, but rarely subject their own methods to the same standards
- Neutral comparison studies are those that are designed to provide such an unbiased, controlled comparison of competing statistical methods
- This talk describes one such study

A joint project between TG2 and TG4

TG2

Selection of variables and functional forms in multivariable analysis

Aim: Derive guidance for variable and function selection in multivariable analysis

Main focus: Identify influential variables and gain insight into their individual and joint relationship with the outcome

Two of the (interrelated) main challenges are:

- ✓ Selection of variables for inclusion in a multivariable explanatory model, and
- Choice of functional forms for continuous variables

TG4

Measurement error and misclassification

Aim: Increase awareness of problems caused by measurement error and misclassification in statistical analyses and remove barriers to use statistical methods that deal with such problems

Key messages: Considering measurement error is necessary because it may have an impact on the study results

Special statistical methods are used to account for measurement error

Additional information is required about the type and size of the measurement error to adjust for measurement error

Aim of the joint project

We are interested in learning the regression relationship between

an exposure variable X and an outcome variable Y:

 $E(\boldsymbol{Y}|\boldsymbol{X}) = f(\boldsymbol{X})$

when X is measured with error. f(X) is thought likely to be a non-linear function.

Various statistical methods are available to do this. Which method(s) should be recommended?

Methods available when X is measured exactly

Popular methods (flexible regression)

B-splines

P-splines

Fractional Polynomials

When **X** is measured with error and *f*(**X**) is linear

Suppose our measurement is $X^* = X + U$, where U is random variable with mean 0, independent of X and Y (Classical non-differential measurement error)

Impact on the regression relationship

- Attenuation Bias: Measurement error leads to attenuation of the estimated regression coefficients when usual estimation methods are used that do not account for the error in X^* . The estimated coefficient is biased towards zero, reducing its magnitude.
- Loss of Precision: Increased variance in the estimates, making them less precise. Effective sample size is reduced due to the error variance.

Methods available when **X** is measured with error and *f*(**X**) is linear

Popular methods

Regression calibration

Multiple imputation

Bayesian estimation

Simulation-Extrapolation (SIMEX)

Note: All of these remove the bias but usually do not recover lost precision

Research objectives

To compare the following methods of estimating *f*(**X**) using simulated datasets:

Regression CalibrationAB-SplinesMultiple ImputationAYP-SplinesBayesian EstimationFractional Polynomials

Study structure

- Cubic B-splines with 1 interior knot at median of observed X*
- P-splines with 10 interior knots, penalty optimised by methods teams
- Fractional Polynomials of second degree (4df), best FP2 power selected by methods teams

- Bayes
- SIMEX

Data Generation and Evaluation Team

(Anne Thiébaut, Laurence Freedman, Aris Perperoglou, Mohammed Sedki)

- Data generation
 - ✓ Binary outcome Y linked to continuous X by logistic regression. Case-control ratio 1:4

logit(P(Y = 1|X)) = f(X)

- ✓ Undisclosed values or distribution of **X** and undisclosed form of f(X)
- \checkmark In place of X, values of X* (X perturbed by classical measurement error) were provided
- ✓ Variance and distribution of measurement error were undisclosed, but a subset of replicated values of X^* were provided
- Evaluation of results: Mean squared error of estimated f(X) compared to true f(X) evaluated over the central 95% of the distribution of X

Imputation Methods Team

(Victor Kipnis, Douglas Midthune, Kevin Dodd, Amer Moosa, Brian Barrett, Matthew Chaloux)

Regression calibration estimates the conditional expectation of the function f(X) given the error prone covariate X* and substitutes it for the true covariate in the logistic regression

 Multiple imputation: The imputed f(X) consists of its conditional expectation given X* and Y plus the imputed value of the regression residual. Imputation is done several (usually 10) times using different model parameter values from the corresponding estimated distributions

Bayesian Method Team

(Paul Gustafson, Raymond Carroll, Frank Harrell, Nadja Klein)

The team specified:

- An outcome model for **Y** given **X**
- An exposure model for **X**
- A measurement error model for **X*** given **X**
- Prior distributions for parameters in each of the three sub-models
- This defined a joint posterior distribution of all parameters and latent X values, given all the observed data
- Given a dataset, off-the-shelf MCMC software yields (a Monte Carlo approximation to) this posterior distribution
- Summaries of the posterior distribution used for inference, e.g., posterior means of parameters in the outcome model are point estimates

Simulation-Extrapolation (SIMEX) Method Team

(Michal Abrahamowicz and Steve Ferreira Guerra)

A 2-step method, Cook and Stefanski (1994), adapted to various measurement error problems, Carroll (2006)

General idea

- Sequentially **simulate** new variables with increasing measurement error. Use generated variables to estimate parameter of interest, each estimate being increasingly biased. This establishes a relationship between amount of bias and amount of measurement error.
- Finally, extrapolate this relationship back to the case of no error

For this project, we used two alternative SIMEX approaches:

- 1) Apply SIMEX to the individual points on the curve
- 2) Apply SIMEX to the B-spline or FP coefficients (not for P-splines)

Stage 1: Data, code creation and evaluation

Data Generation: 5 Datasets

- Main Study: N=15,000 independent realizations of a binary outcome Y and a continuous covariate measured with error X*
- Replication substudy: sample size 250
- Measurement error variance:
 0.5*var(X)
- Error distribution: normal

Data Generation Team

Methods Teams

Code generation

on distributed

"blind data"

and

Resulting

estimates of *f*(**X**)

Evaluation: Mean Squared Error

Data Generation Team

The forms of *f*(*X*) used in the simulations

Blinded results from Stage 1 & Benchmarks

Method	Dataset 1	Dataset 2	Dataset 3	Dataset 4	Dataset 5	Average	
Α	0.0051	0.00122	0.00518	0.0033	0.0084	0.0046	
В	0.0034	0.00149	0.00454	0.0039	0.0103	0.0047	
С	0.0078	0.00264	0.00278	0.0033	0.0156	0.0064	
D	0.0089	0.00250	0.00400	0.0038	0.0143	0.0067	
E	0.0058	0.00161	0.00822	0.0065	0.0130	0.0070	
F	0.0054	0.00159	0.00893	0.0069	0.0137	0.0073	
G	0.0068	0.00236	0.00430	0.0052	0.0223	0.0082	
н	0.0081	0.00238	0.00576	0.0043	0.0257	0.0092	
J	0.0074	0.00094	0.01079	0.0127	0.0141	0.0092	
К	0.0067	0.00098	0.01078	0.0142	0.0131	0.0092	
L	0.0082	0.00111	0.00550	0.0161	0.0181	0.0098	
Μ	0.0111	0.00591	0.00445	0.0096	0.0190	0.0100	
Ν	0.0083	0.00088	0.00663	0.0167	0.0184	0.0102	
Р	0.0106	0.00452	0.00440	0.0140	0.0182	0.0103	
Q	0.0101	0.00080	0.00722	0.0150	0.0200	0.0106	
R	0.0108	0.00040	0.00683	0.0157	0.0209	0.0109	-
S	0.0099	0.00073	0.00840	0.0165	0.0207	0.0112	Ве
т	0.0108	0.00047	0.00699	0.0160	0.0220	0.0113	X
U	0.0127	0.00090	0.00555	0.0170	0.0261	0.0124	D -
V	0.0064	0.00097	0.00919	0.0188	0.0339	0.0139	ве
W	0.0060	0.00102	0.01012	0.0166	0.0369	0.0141	X
х	0.0139	0.00135	0.01397	0.0326	0.0161	0.0156	D -
Y	0.0137	0.00141	0.01457	0.0322	0.0167	0.0157	ве
Z	0.0234	0.00345	0.01085	0.0447	0.0238	0.0212	X *
AA	0.0318	0.00057	0.00597	0.0545	0.0171	0.0220	Da
AB	0.0266	0.00057	0.00596	0.0634	0.0169	0.0227	ве
AC	0.0320	0.00129	0.01277	0.0543	0.0135	0.0228	X*
AD	0.0368	0.00177	0.01193	0.0531	0.0289	0.0265	
AE	0.0448	0.00112	0.01355	0.0580	0.0160	0.0311	
AF	0.0812	0.00359	0.00627	0.0697	0.0360	0.0394	
AG	0.0626	0.00045	0.00646	0.1515	0.0339	0.0518	
AH	0.0688	0.00417	0.01189	0.2070	0.0400	0.0664	
AJ	0.0134	0.00187	0.14832	0.1047	0.0868	0.0710	
AK	0.0130	0.00210	0.38618	0.1102	0.1093	0.1242	

Two sorts of benchmark:

- 1. MSEs based on exact X's (lower bound)
- 2. MSEs based on unadjusted spline methods with X^*

Method	Dataset	Dataset	Dataset	Dataset	Dataset	Average
	1	2	3	4	5	
Bench-B	0.0029	0.00160	0.00203	0.0034	0.0040	0.0028
X						
Bench-P	0.0035	0.00008	0.00280	0.0029	0.0035	0.0026
X						
Bench-B	0.0124	0.00449	0.00594	0.0028	0.0311	0.0113
X *						
Bench-P	0.0101	0.00418	0.00850	0.0023	0.0314	0.0113
X *						

Stage 2 Simulations

- Same 5 forms of X-Y relationships: logit(P(Y=1|X)) = f(X)
- Main sample sizes: 15000, 30000
- Replication substudy sample sizes: 250, 750
- Measurement error variances: 0.5*var(X), 1.0*var(X)
- Error distribution: Normal, Gamma (shape parameter 3) adjusted to have mean 0
- All combinations of above, except the Stage 1 combination, leading to 15 x 5 = 75 datasets: 15 for each of the 5 forms of relationship
- Code finalized after Stage 1 used by Data Generation and Evaluation Team to run on all 75 datasets

Stage 2 Selected results: MSE

Key: MI - Multiple Imputation, RC - Regression Calibration, Bayes (logit of posterior mean), SIMEX (Pointwise)

Method	Data 1	Data 2	Data 3	Data 4	Data 5	Average
SIMEX-PS	0.006	0.001	0.005	0.004	0.018	0.0065
SIMEX-FP	0.004	0.002	0.005	0.004	0.019	0.0065
SIMEX-BS	0.006	0.004	0.006	0.005	0.016	0.0073
Bayes-FP	0.047	0.004	0.004	0.020	0.017	0.0183
RC-FP	0.120	0.003	0.005	0.038	0.012	0.0356
RC-PS	0.146	0.005	0.006	0.048	0.016	0.0440
MI-PS	0.068	0.035	0.023	0.036	0.072	0.0469
MI-BS	0.068	0.036	0.025	0.036	0.073	0.0473
MI-FP	0.067	0.036	0.025	0.035	0.078	0.0481
RC-BS	0.132	0.021	0.021	0.060	0.031	0.0531
Bayes-BS	0.227	0.261	0.051	0.069	0.084	0.1383

Stage 2 Selected results: J-shape

₹

Stage 2 Selected results: Saturation

Stage 2 Selected results: Threshold above median

Multiple Imputation and Regression Calibration

Bayes

SIMEX (pointwise)

Main Summary

- SIMEX performed best
- Bayes with fractional polynomials or P-splines was next best
- Multiple imputation and regression calibration performed similarly and were in third place
- Bayes with B-splines performed poorly

The results were surprising

- Most of us expected: Bayes + MI > RC > SIMEX
- We do not yet have a clear explanation of why it happened
- We suspect that SIMEX might be more robust in complex models

Other matters

We have performed more in-depth analysis of the results relating estimation accuracy to dataset characteristics, and looking for interactions with estimation methods. Results available on request.

Next steps:

- (a) Further investigation of reasons for the results
- (b) Expand Stage 2 to smaller sample sizes (going down from 15000 to 2000)
- (c) Stage 3: Perform replication to understand variances of the estimates
- (d) Stage 4: Broaden to more realistic scenarios, e.g. where there are several other covariates

References to Neutral Comparison Studies

Towards neutral comparison studies in methodological research.
 Boulesteix AL et al (eds). Biometrical Journal 2024; Vol.66 (Issue 2)

 STRATOS: Neutral comparison studies as the cornerstone to compare statistical methods.
 Boulesteix AL et al. Biometric Bulletin 2024. Issue 2.