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Why open science in simulation studies?

A replication crisis in methodological research?
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Why open science in simulation studies?

How to improve neutrality through open science practices?

Data generation:
Pre-registration of simulation setup including transparent reporting of
pilot studies with feedback by experts
Data are generated by an independent team

Expertise:
Involve independent experts for all methods

Reporting:
Blinded reporting of results by independent person who has little
experience with any of the methods
Shiny app: Comprehensive visualization of complex simulation results
may reduce selective reporting of results

Transparency:
Code sharing for methods and for simulation study
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Why open science in simulation studies?

How can code sharing help?
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Phase IV simulation study

Illustration: Phase IV simulation study on
the correction of measurement error in

occupational epidemiology
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Phase IV simulation study

Background

Uncertainty in exposure assessment poses an important threat to the
validity of statistical inference in occupational epidemiology

Exposure assessment in occupational epidemiology is often based on
Job Exposure Matrices in which there are different sources of error
[Greenland et al., 2016]:

Exposure information for each job is usually imprecise or incomplete
Exposures within a given job code may vary considerably from person
to person due to differences in job conditions and worker practices
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Phase IV simulation study

Shared measurement error

Xj1(t)

Xj2(t) 

𝜉j(t) true mean  
exposure

Zj(t):  
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Phase IV simulation study

Exposure assessment in the second exposure period

E (t, o, j) = CRn(pto) · 12 · g(pto) · w(pt) · f (poj)
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Phase IV simulation study
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Phase IV simulation study

Measurement models for the second exposure period

CRn(pto) = CRn(pto) + UC,c(pto)

C′Rn(t, o) = CRn(pto) · UC,B(t, o)

f (poj) = ϕ(poj) · Uϕ,c(poj)
ϕ′(t, o, pj) = ϕ(poj) · Uϕ,B(t, o, pj)

w(pt) = ω(pt) · Uω,c(pt)
ω′(t, o) = ω(pt) · Uω,B(t, o)

g(pto) = γ(pto) · Uγ,c(pto)
γ′(t, o) = γ(pto) · Uγ,B(t, o)

10.12.2024 16 / 22



Phase IV simulation study

Aims of the simulation study

Assess the overall impact of measurement error on risk estimation with
a naive estimate which does not assume any measurement error

Assess the performance of a Bayesian hierarchical approach and
compare it with SIMEX and regression calibration
Assess to what extent the complex structures of measurement error
can be accounted for with simplified measurement models by
considering the results under model misspecification
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Phase IV simulation study

How to choose a neutral data generating mechanism?

Figure: “Climb the tree”.
Drawing from Alexandra
Kalberer, published in
[Strobl and Leisch, 2024]
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Phase IV simulation study

How to address inventor bias and differences in expertise?

Independence: Person A responsible for the implementation of the
Bayesian hierarchical model, person B responsible for data generation
and the implementation of SIMEX and regression calibration

Expertise: Involve two experts on frequentist methods for
measurement error correction
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Phase IV simulation study

Preliminary results - Scenario 1

coverage
rate

beta bias of the mean
mean median absolute relative in %

naive (frequentist) 0.31 0.27 0.25 -0.03 -11.32
naive (Bayes) 0.31 0.26 0.25 -0.04 -12.76
RC 0.39 0.32 0.27 0.02 5.96
Bayes 0.94 0.29 0.29 -0.01 -2.98
SIMEX 0.57 0.29 0.28 -0.01 -4.24
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Phase IV simulation study

Preliminary results - Scenario 2

coverage
rate

beta bias of the mean
mean median absolute relative in %

naive (frequentist) 0.25 0.25 0.24 -0.05 -17.36
naive (Bayes) 0.27 0.24 0.24 -0.06 -18.65
RC 0.29 0.29 0.25 -0.01 -2.57
Bayes 0.93 0.32 0.32 0.02 6.76

adjustment for
classical error
Bayes Level a 0.60 0.31 0.31 0.01 4.88
SIMEX 0.61 0.27 0.25 -0.03 -11.47
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Outlook and discussion

Outlook and discussion

Outlook:
Evaluate performance on new data generation mechanism

Pre-register simulation design and methods and ask for feedback of
STRATOS experts on measurement error
Limit spin and selective reporting through blinded reporting of results

Discussion:
Is it really a phase IV study?
Is the performance of a method when implemented by experts (level 3)
really of interest?
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Outlook and discussion

Thank you for your attention!
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Simulation scenario S1

CRn(t, o) = CRn(t, o) + Uc(t, o)

f (o, j) = ϕ(o, j) · Uϕ,c(o, j)

w(pt) = ω(pt) · Uω,c(pt)

g(pt , o) = γ(pt , o) · Uγ,c(pt , o)

Xi (t, o) = CRn(t, o) · 12 · γ(pt , o) · ω(pt) · ϕ(o, j)

Zi (t, o) =CRn(t, o) · 12 · g(pt , o) · w(pt) · f (o, j)
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Simulation scenario S2

CRn(t, o) = CRn(t, o) + Uc(t, o)

f (o, j) = ϕ(o, j) · Uϕ,c(o, j)
ϕ′(t, o, j) = ϕ(o, j) · Uϕ′,B(t, o, j)

w(pt) = ω(pt) · Uω,c(pt)
ω′(t, o) = ω(pt) · Uω′,B(t, o)

g(pt , o) = γ(pt , o) · Uγ,c(pt , o)
γ′(t, o) = γ(pt , o) · Uγ′,B(t, o)

Xi (t, o) = CRn(t, o) · 12 · γ′(t, o) · ω′(t, o) · ϕ′(t, o, j)

Zi (t, o) =CRn(t, o) · 12 · g(pt , o) · w(pt) · f (o, j)
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Preliminary results - Scenario 1

coverage
rate

beta bias of the mean
mean median absolute relative in %

naive (frequentist) 0.31 0.27 0.25 -0.03 -11.32
naive (Bayes) 0.31 0.26 0.25 -0.04 -12.76
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Simulation scenario S2
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Preliminary results - Scenario 2

coverage
rate

beta bias of the mean
mean median absolute relative in %

naive (frequentist) 0.25 0.25 0.24 -0.05 -17.36
naive (Bayes) 0.27 0.24 0.24 -0.06 -18.65
RC 0.29 0.29 0.25 -0.01 -2.57
Bayes 0.93 0.32 0.32 0.02 6.76

adjustment for
classical error
Bayes Level a 0.60 0.31 0.31 0.01 4.88
SIMEX 0.61 0.27 0.25 -0.03 -11.47
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Simulation scenario S3

CRn(t, o) = CRn(t, o) + Uc(t, o)

f (o, j) = ϕ(o, j) · Uϕ,c(o, j)
ϕ′(t, o, j) = ϕ(o, j) · Uϕ′,B(t, o, j)

w(pt) = ω(pt) · Uω,c(pt)
ω′(t, o) = ω(pt) · Uω′,B(t, o)

g(pt , o) = γ(pt , o) · Uγ,c(pt , o)
γ′(t, o) = γ(pt , o) · Uγ′,B(t, o)

Xi (t, o) =CRn(t, o) · 12 · γ′(t, o) · ω′(t, o) · ϕ′(t, o, j)

+ UE ,B(i , t, o, j) + UE ,B(i , o, j)

Zi (t, o) =CRn(t, o) · 12 · g(pt , o) · w(pt) · f (o, j)
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Preliminary results - Scenario 3

coverage
rate

beta bias of the mean
mean median absolute relative in %

naive (frequentist) 0.28 0.24 0.24 -0.06 -19.27
naive (Bayes) 0.22 0.23 0.23 -0.06 -20.63
RC 0.37 0.29 0.25 -0.01 -3.91
Bayes 0.98 0.31 0.31 0.01 3.50

Bayes double size 0.28 0.84 0.80 0.54 178.76
Bayes half size 0.80 0.30 0.30 -0.00 -1.43

adjustment for
classical error
Bayes Level 5a 0.55 0.30 0.29 0.00 0.88
SIMEX 0.60 0.26 0.25 -0.04 -13.81

10.12.2024 7 / 15



M1b: Measurement model to describe uncertain quantities
in underground-mining objects in Thuringia in the first
exposure period

E (t, o, j) =
CRn(t0(o0(o)), o0(o)) · 12

A(t0(o0(o)), o0(o))
· te(o) · A(t, o))·

g(pto) · w(pt) · f (poj)
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Xicum(t)

Yi, δi

E(t,o,pj)

l(i,t,o,j)

Xi(t)

E*(t,o,j0(o))

EM(t,o, j0(o))

e(t,o)

CRn(t0(o0(o)),o0(o))

M1b

A(t0(o0(o)),o0(o))

CRn(t0(o0(o)),o0(o))

g(pto)

𝝉’e(t,o)

λ β 𝜑(poj)

f(poj)

𝜑’(t,o,pj)

𝜔’(t,o) w(pt)

𝜔(pt)

𝛾(pto)

𝛾’(t,o)

𝝉e(o)te(o)

A(t,o)

𝜏
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M2_Expert: Measurement model to describe uncertain
quantities in underground-mining objects in the second
exposure period

E (t, o, j) = CExp(pto) · 12 · g(pto) · w(pt) · f (poj)
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λ

Xicum(t)

β

Yi, δi

E(t,o,pj)

l(i,t,o,j)

Xi(t)

E*(t,o,j0(o))

𝜔’(t,o)

CExp(pto)

σC,c2 CExp(pto)

w(pt)

σ𝜔,c2σ𝜔,B2

𝛾’(t,o)

𝛾(pto)

g(pto)

σ𝛾,B2 σ𝛾,c2

𝜔(pt)

𝜑(poj)
σ𝜑,c2 σ𝜑,B2

f(poj) 𝜑’(t,o,pj)

M2_Expert

𝜏

C'Exp(t,o)
σC,B2
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M4: Measurement model to describe uncertain quantities in
surface areas affiliated to mining and in exploration objects
in Thuringia

E (t, o, j) = f (poj) · E (pto)
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λ

Xicum(t)

β

Yi, δi

E(t,o,pj)

l(i,t,o,j)

Xi(t)

 E(pto)

𝜑(poj)
σ𝜑,c2 σ𝜑,B2

f(poj) 𝜑’(t,o,pj)

ℰ’(t,o)

M4/MX_Expert_WLM

ℰ(pto)

𝜏
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M6: Measurement model to describe uncertain quantities in
open pit mining objects

E (t, o, j(o)) =
12

3700
(CRn,0(1994/1995, 300) +

(CRn,130(1994/1995, 300)− CRn,0(1994/1995, 300))
d(t, o)

130
·

e(pto) · e2(pto)) ·
g(pto) · w(pt) · f (ptj)
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Measurement models in the Wismut cohort

mining objects
PPY: 52%

development 
objects

PPY: 2%

exploration 
objects

PPY: <1%

surface areas 
affiliated to mining

PPY: 21%
(M4)

1st period 
PPY: 9%

2nd period 
PPY: 18% 
(M2)

3rd period 
PPY: 25% 
(M3)

Saxony 
PPY: 9% 
(M1a)

Thuringia 
PPY: <1% 
(M1b)

1st period 
PPY: 2%

2nd period 
PPY: <1% 
(M2)

3rd period 
PPY: <1% 
(M3)

Saxony 
PPY: 2% 
(M1a)

Thuringia 
PPY: <1% 
(M1b)

1st period 
PPY: <1%

Saxony 
PPY: <1% 
(M1a)

Thuringia

(M4)

underground mining 
objects

   PPY: 76%

processing companies
   PPY: 7% (M5)

open pit mining objects
PPY: 1%

(M6)

surface objects
PPY: 16%

PPY: <1%

    (M5a: 2%; M5b: 5%)
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Exposure assessment in the Wismut cohort
[Küchenhoff et al., 2018]

Küchenhoff, H., Deffner, V., Aßenmacher, M., Neppl, H.,

Kaiser, C., Güthlin, D. et al. (2018). Ermittlung der Unsicherhieten der Strahlenexpositionsabschätzung in der
Wismut-Kohorte - Teil I - Vorhaben 3616S12223. Resssortforschungsberichte zum Strahlenschutz. Bundesamt für
Strahlenschutz (BfS).
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