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Abstract

Quantitative bias analysis (QBA) permits assessment of the expected impact of various imperfections of the available data on the
results and conclusions of a particular real-world study. This article extends QBA methodology to multivariable time-to-event analyses
with right-censored endpoints, possibly including time-varying exposures or covariates. The proposed approach employs data-driven
simulations, which preserve important features of the data at hand while offering flexibility in controlling the parameters and
assumptions that may affect the results. First, the steps required to perform data-driven simulations are described, and then two
examples of real-world time-to-event analyses illustrate their implementation and the insights they may offer. The first example
focuses on the omission of an important time-invariant predictor of the outcome in a prognostic study of cancer mortality, and permits
separating the expected impact of confounding bias from noncollapsibility. The second example assesses how imprecise timing of an
interval-censored event—ascertained only at sparse times of clinic visits—affects its estimated association with a time-varying drug
exposure. The simulation results also provide a basis for comparing the performance of two alternative strategies for imputing the
unknown event times in this setting. The R scripts that permit the reproduction of our examples are provided.

Key words: simulations; quantitative bias analysis; survival analysis; sensitivity analyses; noncollapsibility; time-varying exposure;
interval censoring.

Introduction
Most epidemiologic studies face some imperfections of the
available data and limitations of the study design that may
affect the accuracy of results and sometimes invalidate the

conclusions. Examples include unmeasured confounders,1-3 mea-
surement errors,4,5 selection bias6-8 or sparse measurements of
time-varying predictors.9,10

Instead of just recognizing such imperfections in the discus-
sion section of the published papers, recent studies increasingly
employ quantitative bias analysis (QBA) for a more formal assess-
ment of their impact on results.11-15 The traditional QBA approach
relies on substantive knowledge and literature to derive quanti-
tative assumptions regarding relevant bias parameters, in order
to repeatedly correct observed data through multiple probabilis-
tic imputation of, eg, an unmeasured confounder or measure-
ment errors.11,12 These sophisticated sensitivity analyses allow
researchers to assess how the estimate of interest may change
if the relevant imperfection was avoided. QBA methods have been

developed for a wide range of settings, including time-to-event
analyses where they permit, eg, assessment of the joint impact
of different data imperfections16 or correction for exposure mea-
surement errors in a binary time-varying exposure.17 However, a
traditional probabilistic QBA approach does not allow quantifying
the impact of the imperfection on bias, mean squared error, or
coverage rate, quantifying the impact of the imperfection on bias,
mean squared error, or coverage rate.18

We propose a simulation-based approach that complements
traditional QBA methods, and may be especially useful in multi-
variable time-to-event analyses, possibly with time-varying expo-
sures (TVEs). In particular, our data-driven simulations permit
directly assessing how the estimates obtained using imperfect
data are expected to diverge from the true parameter value,
while accounting for important features of the specific real-world
dataset. Real-world applications are illustrated by two time-to-
event analyses, one assessing the impact of an unmeasured prog-
nostic factor and the other involving a TVE and an imprecisely
timed event.
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Methods
Proposed approach to data-driven simulations
for time-to-event analysis
We propose to combine (1) observed multivariable real-world
data with (2) simulating additional data items (eg, outcomes
and/or covariates) based on carefully defined assumptions. Sim-
ulations permit assessing the impact of the imperfection on, for
example, bias and coverage rate, whereas using real-world data
ensures the relevance of results for a particular empirical study.
Our data-driven simulation approach involves the following 7
steps. Practical implementation of these steps is later illustrated
in two real-world examples, each dealing with a different data
imperfection. Steps 1-3 are the preliminary steps. Steps 4-6 are to
be repeated across m independent repetitions for each scenario
identified in step 3. Step 7 is the final step.

Step 1. Identification of data imperfections. Identify the
data imperfection(s) of interest in the available real-world dataset
and, if relevant, conduct preliminary analyses to assess, eg, their
frequency and/or patterns.

Step 2. Initial analyses not corrected for the imperfec-
tions. Fit the chosen regression models (usually multivariable)
to get initial uncorrected estimates of the relationships of the
exposure and available covariates with the outcome.

Step 3. Simulation assumptions. Formulate assumptions
underlying data simulations, in two substeps:

3a. Specify a few plausible alternative parameter “true” values
for the association of primary interest, including null and one
close to the initial step 2 estimate.

3b. In addition, based on substantive knowledge, formulate
assumption(s) regarding how available data can be modified or
expanded to artificially create “oracle datasets,” free of the imper-
fection(s) identified in step 1. Several scenarios may involve dif-
ferent combinations of assumptions in 3a and 3b.

Step 4. Oracle dataset generation. Generate an oracle
dataset, free of the imperfection(s) of interest, that combines the
relevant empirical initial step 2 estimates with additional data
simulated according to step 3b assumptions.

Step 5. Imperfect dataset generation. Modify the oracle
dataset from step 4 to account for the relevant imperfection(s).

Step 6. Analyses. Analyze (6a) oracle and (6b) imperfect
(modified) datasets (from steps 4 and 5, respectively), using the
same methods.

Step 7. Final step: summarizing results. Summarize
results of step 6 across the m repetitions, for a given scenario,
using the performance characteristics of interest.18 Contrast the
corresponding results for oracle versus imperfect data, to assess
the expected impact of the data imperfection(s) on real-world
initial results from step 2.

Both real-world examples, discussed below, employ m = 1000
repetitions, which ensures that the 95% CI for bias will exclude
0 with about 90% power if the bias corresponds to 10% of the
empirical SE of estimates,19 implying a standardized difference
of 10% between the mean estimate and true parameter value
(see Appendix S1 for details). In other applications, the required
number of repetitions may be calculated to achieve the desired

precision for other performance characteristics listed, eg, in Mor-
ris et al.18

For time-to-event analyses, in step 4 we adapted the validated
permutational algorithm20-22 to assign each event time observed
in the real-world dataset to one of the individuals’ multivariable
vectors of (observed or simulated) covariate/exposure values. To
this end, for each event time t, we calculated the corresponding,
possibly time-varying, hazard ratios HRi(t) for each individual i in
the risk set, based on the true data-generating model, defined to
reflect assumptions from step 3. The algorithm uses weighted
random sampling, with probabilities proportional to HRi(t), to
assign the event at time t to 1 individual, who is then removed
from all future risk sets.20-22 Appendixes S3 and S4 describe the
algorithm implementation for each example.

Example 1: Assessing the impact of
omitting an important prognostic factor
Empirical research question and data source
To illustrate the impact of lacking data on an important prognos-
tic factor in multivariable time-to-event analyses, we considered
the association between colon obstruction by a tumor and all-
cause mortality in colon cancer patients in a publicly available
dataset from the R (R Foundation for Statistical Computing) sur-
vival package.23,24 Among n = 906 patients without missing data,
175 (19.3%) had the colon obstructed, and 441 died during follow-
up. Some patients’ characteristics, assessed at diagnosis, were
associated with colon obstruction and/or mortality, and some
were correlated with each other (see Tables S1 and S2).

R code to reproduce our data-driven simulations is available at
the link provided in the Data Availability statement.

Step 1. Identification of the data imperfection. The avail-
able data do not include cancer stage at diagnosis,23,24 a powerful
predictor of mortality in colorectal cancer patients,25,26 likely
associated with colon obstruction.27,28

Step 2. Initial analyses not corrected for the imperfection.
In a Cox proportional hazards (PH) model adjusting for measured
covariates, colon obstruction was associated with a moderately
increased all-cause mortality (hazard ratio [HR] of 1.33; 95% CI,
1.06-1.68; Table S1).

Step 3. Simulation assumptions.
3a. In 4 scenarios, we assumed a true HR for the colon

obstruction-mortality association of 1.0, 1.3 (similar to initial step
2 estimate), 1.5, or 2.0.

3b. Based on clinical literature and discussions with a colorectal
cancer epidemiologist, we assumed that higher III/IV cancer stage
at diagnosis (1) had a prevalence of about 35%, (2) was associated
with much higher mortality (HR = 4.0),25,26 and (3) was associated
with colon obstruction27,28 (odds ratio [OR] of 1.2) and selected
covariates (see Appendix S2). Additional scenarios assumed either
a null (OR = 1.0) or strong (OR = 2.0) obstruction-stage association.
Finally, to confirm that initial results can be replicated, we added
a scenario with no obstruction-stage (OR = 1.0) and no stage-
mortality (HR = 1.0) associations, and with obstruction-mortality
HR = 1.3, similar to the initial estimate.

Step 4. Oracle dataset generation. The m = 1000 oracle
datasets were generated by adapting the permutational algo-
rithm,20-22 using 4 substeps (see Appendix S3 for more details).
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Figure 1. Illustration of how oracle datasets were created for Example 1,
by combining real-word with simulated data. Rectangles represent data
taken directly from the real-word dataset. In particular, individual data
for obstruction and covariates (C1, . . . , C9), shown in the black rectangle
on top left, were extracted without any modifications, implying that all
relationships between these variables were preserved. Survival
outcomes, consisting of outcome times and status (event or censoring),
were extracted from the real-word dataset, but in different simulated
oracle samples, each outcome was assigned to different subjects using
the permutational algorithm. The oval represents the simulated data on
cancer stage. Arrows identify relationships considered when either
simulating cancer stage or assigning outcomes to individual study
participants. For dotted arrows, the strength of the associations (hazard
ratio or odds ratio) used for data generation was based on the
corresponding assumptions from step 3. For solid arrows, the strength of
associations used to simulate datasets was based on the adjusted HR for
each covariate estimated in step 2 using the real-world data.

Substeps 4a-4b were common to all repetitions, and substeps 4c-
4d were repeated independently for each repetition:

4a. Extract the 906 individual Xi vectors of observed values of
colon obstruction exposure and all measured covariates, preserv-
ing all their relationships.

4b. Independently, extract all 906 observed real-world out-
comes: 441 times of death and 465 censoring times.

4c. Generate a binary indicator of higher cancer stage Si for
each patient, i = 1, . . . ,906, from the binomial distribution, with a
probability calculated using a multivariable logistic model based
on patient-specific Xi vectors from substep 4a and corresponding
ORs assumed in step 3 (see Appendix S2 for details).

4d. Assign each outcome to 1 individual, i = 1, . . . ,906, defined
by the vector (Xi, Si), using the “true” multivariable PH model with
HRs for obstruction exposure and stage based on assumptions
from step 3, and step 2 HR estimates for measured covariates.

Figure 1 shows how different elements of observed real-
world (rectangles) and simulated (oval) data were combined
to generate the oracle datasets. Solid arrows indicate relation-
ships whose strength was based on initial step 2 estimates,
while dotted arrows represent those based on assumptions
from step 3.

Step 5. Imperfect dataset generation. For each oracle
dataset generated at step 4, we deleted the simulated cancer stage
but kept unchanged the values of exposure, measured covariates
and the outcomes assigned by the permutational algorithm.

Step 6. Analyses. Each simulated dataset was analyzed inde-
pendently using a multivariable Cox PH model that included
the exposure and all measured covariates but either did (oracle
datasets) or did not (imperfect datasets) adjust for the simulated
cancer stage.

Step 7. Final step: summarizing results. Table 1 summa-
rizes results for colon obstruction exposure from multivariable
Cox PH models fitted to 1000 either oracle or imperfect datasets

for each scenario. Oracle estimates have only minimal relative
biases < 2.5% and coverage rates very close to the nominal 95%,
which indirectly validates our simulation methods.

In contrast, for most simulated scenarios, the model fitted to
imperfect data, without cancer stage, yielded moderately biased
estimates, with the 95% CI for bias excluding 0 (indicated by
footnote b in column 12 of Table 1). The overestimation vs. under-
estimation of the true log(HR) in different scenarios reflects the
double-edged impact of not adjusting for stage. In scenarios 1-4,
advanced stage is both (weakly) associated with colon obstruction
(OR = 1.2) and (strongly) associated with mortality (HR = 4.0). Thus,
not adjusting for stage induces overestimating the obstruction HR,
due to confounding. Yet omitting a strong predictor also shifts
all estimates toward the null due to noncollapsibility of HRs.29,30

Thus, imperfect exposure estimates reflect a trade-off between
confounding by stage versus noncollapsibility.31-33 This trade-off
depends on the exposure HR (shown in the second column of
Table 1). Scenario 1, with no obstruction-mortality association
(HR = 1.0), avoids noncollapsibility29 and allows quantifying the
pure impact of unmeasured confounding (overestimating the
exposure log(HR) by 0.057). In scenarios 2-4, the overestima-
tion bias due to confounding is counterbalanced by a gradually
increasing shift toward the null due to noncollapsibility of Cox
model–based HRs, which increases with increasing true HR for
obstruction exposure.29,34 This explains why, across scenarios
1-4, the discrepancy between the mean estimate and true log(HR)
for obstruction moves from positive toward the null and then
to negative (column 12 of Table 1). Interestingly, in scenarios 2
and 3, with true exposure HR of 1.3-1.5, similar to the initial
estimate not adjusted for stage (HR = 1.33; 95% CI, 1.06-1.68), the
impacts of confounding versus noncollapsibility almost balance
each other, resulting in only very small biases of 0.019 or −0.004.
Finally, scenario 5, with no confounding (obstruction-stage OR =
1.0), quantifies the expected (pure) impact of noncollapsibility
(Table 1).

In additional scenarios 6 and 7, with a stronger obstruction-
stage association (OR = 2.0 instead of 1.2), confounding had a
much stronger impact than noncollapsibility, resulting in marked
overestimation biases and low coverage rates (Table 1, columns 12
and 16). Importantly, coverage and type I error rates for scenario
6 indicate that even if true obstruction HR = 1.0, the 95% CI for
the estimate not adjusted for stage will incorrectly exclude 1.0
with a 0.481 probability, as opposed to only 0.084 when assuming
a weak stage-obstruction OR = 1.2 (scenario 1). Finally, scenario
8 assumed that stage had no associations with obstruction (OR =
1.0) and mortality (HR = 1.0). Then, the mean estimates, empirical
SEs, and coverage rates were practically identical for oracle and
imperfect datasets, with no bias for either (Table 1). This con-
firmed that under such assumptions, failure to adjust for stage
would not affect the estimates.

Example 2: Assessing the impact of
imprecise timing of an event on its
association with a time-varying exposure
Empirical research question and data source
Many cohort studies focus on endpoints that can be detected only
at the discrete times of clinical assessments at medical visits.
Examples include cancer recurrence, hyperlipidemia, or cognitive
impairment. Then, one can only establish that the event occurred
at some time during the interval between 2 adjacent clinic visits,
often several months apart. Such interval-censored endpoints
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Figure 2. Illustration of the impact of inaccurate timing of an interval-censored event for a hypothetical study participant: the time-varying exposure
metric “any use in the last 2 weeks” value differs between the true event time (exposure = yes) and the imputed event time (exposure = no) at the
midpoint of the interval between the visit when the event was detected and the preceding visit.

require specialized analytical methods.35,36 Yet, only a few meth-
ods were proposed to deal with associations of interval-censored
events with time-varying exposures (TVEs),37-39 with little
evidence of their use in real-world epidemiologic studies, possibly
due to the lack of easily accessible software.40 Nonetheless, TVEs
are increasingly assessed in cohort studies and are essential, for
example, to account for changes over time in drug exposures
in pharmacoepidemiology.41,42 Importantly, inaccurately timed
interval-censored events may be incorrectly aligned with TVE
values, as illustrated in Figure 2, where the (unknown) event
time is imputed at the midpoint of the between-visits interval.
This is likely to induce underestimation of the exposure-
outcome association.43 However, the magnitude of this bias will
depend on the clinic visit frequency, pattern of within-person
changes in exposure, and strength of the exposure-outcome
association.

To illustrate how data-driven simulations help explore the
impact of interval-censoring of the outcome, we considered the
association of a binary TVE representing benzodiazepine use in
the past 2 weeks with a transient cognitive impairment (tem-
porary problems with visuomotor coordination, memory, or con-
centration). Benzodiazepines are sedative-hypnotic drugs possibly
associated with cognitive impairment.44,45 Using the new-users
design,46 1250 new elderly benzodiazepine users were followed
from their first benzodiazepine prescription for up to 3 years, until
one of the 285 (22.8%) events or censoring at their last follow-
up visit. Daily benzodiazepine use was ascertained based on
dates and durations of consecutive prescriptions.42 At clinic visits,
on average about 3 months apart, participants reported if they
experienced cognitive impairment since the last visit, resulting in
an interval-censored event (see Figure 2).

Due to confidentiality restrictions, we present synthetic
data similar to real-world benzodiazepine use data.47 This
synthetic dataset, called “original” dataset below—which includes
participants’ TVE (daily indicator of benzodiazepine use in the
past 14 days), age, and sex—as well as dates of clinic visits, and
the R scripts to reproduce the simulations are available at the link
provided in the Data Availability statement.

Step 1. Identification of the data imperfection. The origi-
nal dataset does not include the exact true times for the interval-
censored cognitive impairment events.

Step 2. Initial analyses not corrected for the imperfection.
The mean length of between-visits intervals in which the 285
events occurred was 92.2 days (interquartile range, 80-104 days).
We considered two popular options for imputing times of interval-
censored events: one at the midpoint of the between-visits inter-
val or a second at the end of this interval, ie, the visit when
cognitive impairment was first reported. In multivariable Cox PH
models, the HR for recent benzodiazepine exposure, adjusted for
age and sex, was substantially higher when event times were
imputed at the midpoint (HR = 1.47; 95% CI, 1.09-2.00) than for
endpoint imputation (HR = 1.21; 95% CI, 0.87-1.68).

Step 3. Simulation assumptions.
3a. In 4 alternative simulated scenarios, we assumed a null or

increasingly strong true HR = 1.0, 1.5, 2.0, or 2.5 for the TVE (recent
benzodiazepine use).

3b. We assumed that each event was equally likely to have
truly occurred on any day during the corresponding between-
visits interval.

Step 4. Oracle dataset generation. Each of the m = 1000
oracle datasets was generated by adapting the permutational
algorithm.20-22 This involved 5 substeps, with substeps 4a-4b
using the original data and, thus, common to all repetitions, and
data-generating substeps 4c-4e repeated independently across m
repetitions (see Appendix S4 for more details):

4a. Extract the observed daily values of the binary TVE repre-
senting benzodiazepine use in the past 2 weeks, together with sex
and age, of the 1250 individuals from the original dataset.

4b. Independently, extract the times of the 285 visits τs (s =
1, . . . ,285) when the observed events were reported and each
corresponding previous visit time τs − Δs from original data.

4c. Consistent with step 3b, for each event, generate the true
event time Ts from the uniform distribution over the interval of
Δs days [τs − Δs + 1; τs], s = 1, . . . ,285.
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4d. Assign each of the 285 true event times Ts from substep
4c to 1 individual i, i = 1, . . . ,1250, defined by the vector [Xi(Ts),
agei, sexi], where Xi(Ts) represents the individual’s exposure at
time Ts. The events were assigned based on the user-defined “true”
multivariable PH model, based on the HR for TVE assumed in step
3a and step 2 estimates: HR = 1.066 for 1 year of age, and HR = 1.098
for male sex.

4e. Censor each of the 965 individuals not assigned an event
in substep 4d at the time their follow-up ended in the original
dataset.

Step 5. Imperfect dataset generation. For each oracle
dataset simulated at step 4, we created two alternative imperfect
datasets, corresponding to the two strategies for imputing event
times used in step 2. First, using endpoint imputation, we imputed
the event time of each participant i—to whom the true event time
Ts was assigned at substep 4d—at their first clinic visit τi after
Ts. Secondly, using midpoint imputation, each event time was
imputed at the midpoint between the visit times before (τi − Δi)
and after (τi) the true event time Ts for individual i to whom Ts

was assigned.

Step 6. Analyses. Simulated oracle and imperfect datasets
were analyzed with multivariable Cox PH models that all included
age, sex and updated TVE, but used different event times. Model
1 was fitted to oracle datasets with the exact true event times
generated at substep 4c. In contrast, models 2 and 3 were
fitted to imperfect datasets with times of interval-censored
events imputed at, respectively, the midpoint and the endpoint
of between-visits intervals during which they occurred. For all
models, for each event at the (true or imputed) time t, we used
the TVE Xj(t) observed at that time t for all individuals j in the
corresponding risk set. Thus, the estimation of each model relied
on possibly different TVE values for the same individual.

Step 7. Final step: summarizing results. Results for
adjusted log(HR) estimates for recent benzodiazepine use,
obtained across 1000 repetitions simulated for each of the 4
scenarios with different true exposure HR, are presented in
Table 2 (for models 2 and 3) and Table S3 (for model 1). As
expected, the estimates are unbiased (1) for all models if there was
no association (HR = 1.0), and (2) regardless of the true HR for the
oracle model 1, which relies on true event times. In contrast, for
all scenarios with exposure HR > 1.0, both models 2 and 3 induce
systematic underestimation bias (Table 2, columns 3 and 8). This
bias is, however, always higher for model 3, which imputed event
times at the interval endpoint, than for model 2 based on midpoint
imputation (Table 2, column 13). On the other hand, both models
yielded similar empirical SE of estimates. Consequently, model
2 produced systematically more accurate estimates (ie, lower
root mean squared error [RMSE]) than model 3, especially for
higher exposure HRs where absolute bias is stronger (Table 2,
column 14). Indeed, for HR = 2.0 or HR = 2.5, in 2/3 of simulated
samples model 2 estimates are closer to the true HR than the
corresponding model 3 estimates (Table 2, last column). Finally,
whereas suboptimal, the coverage rate for model 2 estimates is
higher in scenarios 2-4 than for model 3, which is below 50% for
the strongest exposure effect (Table 2, columns 7 and 12).

Importantly, simulated scenario 1 indicates that in the absence
of a true association with the TVE, model 2, fitted to imper-
fect data with midpoint imputation, would be unlikely to yield:
(1) a 95% CI excluding the null HR = 1.0 (coverage rate of 95.7%
in Table 2, implying a type I error rate of 4.3%) and (2) a point

estimate exceeding the uncorrected HR = 1.47 observed in the
original dataset (occurring in only 1.1% of simulated samples, data
not shown). Thus, it would be very unlikely to obtain the initial
midpoint estimate (HR = 1.47; 95% CI, 1.09-2.00) if there were no
TVE-event association. On the other hand, in scenario 2, the 95%
CI for endpoint imputation (model 3) incorrectly included HR =
1.0 in 68.6% of samples in spite of true HR = 1.5 (data not shown).
Thus, the initial endpoint imputation results (HR = 1.21; 95% CI,
0.87-1.68) are also compatible with at least a moderate hazard
increase associated with recent benzodiazepine use.

Overall, our simulation results also explain why the midpoint-
based imputation yielded a markedly higher HR estimate in the
original data, and suggest this estimate is likely less biased than
the popular alternative of endpoint-based estimate, even if both
likely underestimate the strength of this association.

Additional sensitivity analyses
We then investigated whether similar results could be obtained
from QBA-like sensitivity analyses of the original data. Because
there is no information on when each event truly occurred within
the corresponding between-visits interval, we randomly assigned
each event time by sampling from the uniform distribution over
this interval. In 1000 replications, we independently repeated
such random redistribution of event times and refitted the Cox
model, adjusting for age and sex, using the modified event times.
The mean of the 1000 log(HR) estimates for the TVE was 0.310
(empirical SE, 0.089), corresponding to HR = 1.36. As this HR is
similar to initial step 2 uncorrected estimates for endpoint (HR =
1.21) or midpoint (HR = 1.47) imputation, this sensitivity analysis
fails to indicate the systematic, substantial underestimation bias
revealed by our data-driven simulations (Table 2). These results
illustrate the difficulties of relying on bias sensitivity analyses if
information necessary to correct the inaccuracies in data, such
as imprecise event times, is unavailable. In such situations, data-
driven simulations help quantify the expected impact of the data
imperfection, by comparing the estimates with the “true” param-
eter value, while preserving relevant features of the empirical
dataset.

Discussion
We have described steps for implementing data-driven sim-
ulations to assess the impact of study imperfections. The
two examples illustrate how our approach may be applied to
address various real-world challenges and yield useful insights
regarding complex analytical issues. The first example permitted:
(1) concluding that lacking data on cancer stage was unlikely to
materially affect the estimated association of colon obstruction
with survival, unless colon obstruction was strongly associated
with cancer stage; and (2) quantifying the expected impacts
of unmeasured confounding and noncollapsibility. The second
example demonstrated that imprecise timing of a transient
cognitive impairment resulted in an important underestimation
of its association with a time-varying exposure (TVE) of recent
benzodiazepine use. Previous research suggested that interval-
censored events would likely result in bias toward the null,
especially for time-invariant exposures (eg, Lindsey and Ryan48).
However, our data-driven simulations helped estimating the
expected magnitude of bias for a TVE, while accounting for both
(1) frequency of visits and (2) short-term within-person changes
in the TVE, both of which likely affected the bias. Furthermore,
our simulation results demonstrated that estimates based on
midpoint imputation are less biased in this setting.
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Our data-driven simulations permit the estimation of the
expected impact of particular data imperfections, in terms of
discrepancies between the initial uncorrected effect estimate and
the true parameter value. This helps assess the plausibility of
observing specific results, in the original imperfect data, under
different assumptions about the true association. For instance,
for Example 1, our simulations yielded new insights about
how confounding by stage could produce spurious evidence of
increased mortality associated with colon obstruction, in the
absence of a true association. Conversely, for Example 2, data-
driven simulations demonstrated that the initial uncorrected
estimates would be very unlikely if benzodiazepine use was not
associated with the outcome. In this sense, our approach com-
plements traditional probabilistic QBA methodology, described,
eg, by Lash and Fink,16 which relies on sensitivity analyses in
which the true parameter value remains unknown. Furthermore,
as opposed to probabilistic QBA, our approach can be employed
in settings where, to correct observed data for the relevant
imperfection, one would require information not available in
practice, such as the exact event times in our second example,
for which our QBA-like sensitivity analyses could not reflect the
important bias toward the null. On the other hand, in contrast
to the alternative “QBA using generated data” approach, which
relies on entirely hypothetical data,13 our simulated data reflect
exactly several features of the real-world dataset being analyzed,
which ensures direct relevance of results to this specific dataset.
This is facilitated by the permutational algorithm, developed and
validated for time-to-event simulations, which allows accounting
for the observed distribution of event times and controlling
associations with time-varying exposures.22 (See Appendix S5
for more detailed explanations regarding differences between our
approach and existing QBA methods.)

Future research may consider some extensions of our methods
and further investigation of both examples. Specifically, as
our first example addresses confounding bias, it could be also
discussed in terms of potential outcomes. Furthermore, our
approach for choosing the bias parameters is deterministic, as in
steps 3 and 4 we fix their values for each simulated scenario. How-
ever, it is possible to extend it to probabilistic simulations, with
each bias parameter sampled from a prespecified distribution,
similar to probabilistic QBA (eg, Lash and Fink16). In addition, our
examples of data-driven simulations may be extended to address
additional study imperfections. For Example 1, this could help
assess the impact of heterogeneity related to (1) cancer severity
within each category of dichotomized cancer stage at diagnosis, or
(2) associations of colon obstruction and cancer stage with cancer-
related vs. other causes mortality. For Example 2, simulations
could be expanded to account for measurement errors in TVE,
based on plausible assumptions about discrepancies between
the actual use of benzodiazepines versus the use recorded in the
prescription database.41 Our examples focus on time-to-event
analyses. Yet our generic approach to data-driven simulations
can be easily adapted to the analysis of other outcomes besides
time-to-event. Finally, data-driven simulations could also help
investigate other analytical issues arising in a given empirical
dataset, beyond the impact of data imperfections. They can assess
the ability of correction methods to reduce bias or compare
the expected performance of alternative estimation methods,
while accounting for salient characteristics of a particular
real-world study.

In conclusion, we hope that our methods and results will stim-
ulate the use of data-driven simulations in real-world epidemi-
ologic studies, where they can complement insights offered by

existing QBA methods. This can help improve analyses of observa-
tional studies, which is the goal of the STRengthening Analytical
Thinking for Observational Studies (STRATOS) initiative.49,50
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