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Introduction

An increasing number of studies of human health rely on long-term
follow-up of prospective or retrospective cohorts.

Participants’ follow-up may end with different endpoint (e.g., various
causes of death), and include developing some intermediate outcomes
(e.g. cancer metastasis or a non-fatal stroke).

Multistate modeling offers a versatile methodology for analyzing
longitudinal processes involving transitions between different health
states and alternative endpoints.
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Example - COVID19 Patients Disease Course

Methods
Data. We analyzed data originating from the Israeli MOH on COVID-19 related
mortality in Israel from 15/07/2020 to 20/01/2021. Patient data included infor-
mation on age, sex, date of positive SARS-CoV-2 polymerase chain reaction (PCR)
test, date of hospitalization, and clinical outcome (death or discharge from hos-
pitalization) for each individual. In addition, daily information on disease severity
during hospitalization was available. Classification of disease severity was based on
the following clinical criteria, applied on 13 July 2020 by the Israeli MOH: mild
illness – individuals who have any of the various signs and symptoms of COVID-
19 (e.g., fever, cough, malaise, and loss of taste and smell); moderate illness –
individuals who have evidence of pneumonia by a clinical assessment or imaging;
severe illness – individuals who have respiratory rate >30 breaths per minute,
SpO2 <93% on room air at sea level, or ratio of arterial partial pressure of oxygen to
fraction of inspired oxygen (PaO2/FiO2) <300 mmHg, and ventilated/critical
(denoted in this paper as Critical) – individuals with respiratory failure who require
ventilation (invasive or non-invasive), multiorgan dysfunction or shock14. These
criteria were determined based on NIH15 and WHO1 definitions.

Statistical analysis. In order to assess whether mortality of hospitalized patients
with COVID-19 in Israel was associated with health-care burden we applied a
multistate prediction model. The model is a modification of a Cox regression-based
survival analysis model previously described in a study by Roimi et al.6. which
predicts the clinical course of individual patients. The model adjusts for right
censoring, recurrent events, competing events, left truncation, and time-dependent
covariates. The original aim of the model was to allow timely allocation of sufficient
healthcare resources and skilled medical professionals by medical centers. Weekly
predictions of mortality and number of severe cases based on the model were
presented and utilized by policy makers in Israel.

A hospitalized patient is in one of four clinical states: mild, moderate, severe, or
critical; the exact definition of the states is detailed above. The multistate model has
five states: (i) mild or moderate, (ii) severe, (iii) critical, (iv) discharged, and (v)
deceased. This multistate model consists of 14 Cox regression models, one for each
possible state-to-state transition, shown in Fig. 3. The 14 semiparametric models
each includes a set of covariates, possibly with time-dependent covariates and
different covariates for each model. Specifically, we took in age, sex, and state at
hospitalization as baseline covariates. We also added time-dependent covariates
encoding the hospitalization history of the patient: cumulative days in hospital and
whether the patient had been in a severe or critical state before.

Making predictions based on our proposed multistate model requires
estimating the absolute risks, also known as the cumulative incidence functions.
The absolute risks involve estimating the probabilities of moving between states,
the time to be spent at each state and integrating over all possible combinations
between any possible triplet of entry state, exit state, and hospital length of stay.
Since hospitalization consists of potentially multiple transitions between transient
states (up to 14 transitions for a patient), the absolute risks have no tractable
analytic forms. Thus, we performed Monte-Carlo (MC) sampling from the
multistate model, in order to obtain consistent predictions for each individual
patient and for the cohort. A detailed description of the MC sampling procedure is
given in Roimi et al.6. Results of the Cox survival analysis are shown in Tables 1–4
of the Supplementary Information.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study originates from the Israel minister of
health. Restrictions apply to the availability of these data and so are not publicly available.

Code availability
Analysis source code is available at:

https://github.com/tomer1812/covid19-israel-multi-state-hospitalization-model
https://doi.org/10.5281/zenodo.4567352
All analyses were performed using the statistical software R version 4.0.3, and Python

version 3.6.
Model source code is available at:
https://github.com/JonathanSomer/covid-19-multi-state-model
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Fig. 3 Multistate model. Patients disease course transitions between 5 possible clinical states: mild or moderate, severe, critical, discharged, and deceased.
Each transition was modeled using a set of Cox regression models, adjusting for right censoring, recurrent events, competing events, left truncation, and
time-dependent covariates.
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Example - COVID19 Patients Disease Course

Based on our multi-state analysis, we predict at the patient level,
(given age, sex and state at time of hospitalization) the following
quantities:

The chance of in-hospital mortality.
The chance of being at a critical state.
The total length of stay in hospital.
The total length of stay in critical state.

Based on the above predictions, we went one step further and
provided predictions at the hospital level

At a given calendar day with the current state and hospitalization
history of all the COVID-19 patients currently at a specific hospital, we
predicted the total number of patients at the hospital, and at a critical
clinical state in particular, for each day over the next 8 weeks.
We provided a prediction for the total occupancy on a calendar scale,
for any real or hypothetical arrival scenario.
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Additional Examples
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a) A 2-state failure process b) A recurrent event process c) A 3-state illness-death process

d) A 4-state illness-death process e) A reversible illness-death process f) A competing-risks process
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An Overview and Recent Developments in the Analysis of
Multistate Processes

The paper includes various topics:

Intensity-based models.

Delayed entry and incomplete data on process history.

Inference for Marginal Parameters and Pseudo-values.

Intermittent observations.

Multistate models with frailty approach.

Software availability.
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Multistate Models with Frailty Approach

Within the framework of multistate survival models, two distinct contexts
could be of practical importance:

Within-subject dependence: the sample comprises of independent
individuals and random effects accounting for subject-specific
unobserved covariates.

Between-subjects dependence: the dataset consists of clustered data,
such as families or centers, where failure times of individuals within
each cluster are presumed to be correlated.
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Multistate Models - Within-Subject Random Effect

Example: the Rotterdam tumor bank of 1546 breast cancer patients who had node-positive
disease and underwent a tumor removal surgery.

An illness-death setting:

(1) Tumor Removal (2) Relapse

(3) Death

Of the 1546 patients, 924 showed a relapse of the disease (63%), 106 died without evidence of
relapse (7%), and 771 patients died after a relapse (79% of the patients who showed a relapse
of the cancer).

Baseline Covariates: age at tumor removal, menopausal status, tumor size, tumor grade,
number of positive lymph nodes, levels of estrogen and progesterone receptors in the initial
biopsy, hormonal therapy, chemotherapy.
Our goal: modeling and estimating the transitions

1 → 2 1 → 3 2 → 3
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Illness-Death Cox and AFT models - methods and software

Table: Models, Estimation Procedures, and Software

Authors Model Estimation
Procedure

Software

Xu et al.
(Biometrics, 2010) Cox, gamma frailty,

semiparametric

Semi-parametric
MLE

None

Lee et al.
(JRSS-C, 2015) Cox, gamma frailty,

semiparametric

Bayesian R package SemicompRisks

Jiang and Haneuse
(SJS, 2017) Transformation model,

known transformation
function,
non-parametric frailty
at the price of known
error distribution

Semiparametric
efficient score

None

Lee et al. (2017)
AFT, additive normal
frailty, parametric and
semiparametric

Bayesian R package SemicompRisks

Gorfine et al.
(JASA, 2021) Cox, marginalized

gamma frailty,
semiparametric

Pseudo-
likelihood
approach

GitHub - frailty-LTRC

Katz and Gorfine
(Biometrics, 2023) AFT, multiplicative

gamma frailty,
semiparametric

Semi-parametric
MLE

GitHub - semicompAFT

Malka Gorfine (TAU, Israel) 45th ISCB 2024, Thessaloniki 9 / 19
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Illness-Death with Frailty and Cox-type Models

Frailty-based Cox-type approach of Xu et al. (2010):

w in an unobserved subject-specific random effect (frailty).

T1 - age at diagnosis, T2 - age at death

hc12(t|Z,w) = lim
∆→0

∆−1 Pr(T1 ∈ [t, t +∆)]|T1 ≥ t,T2 ≥ t,Z,w)

= wh012(t) exp(β
T
12Z)

hc13(t|Z,w) = lim
∆→0

∆−1 Pr(T2 ∈ [t, t +∆)]|T1 ≥ t,T2 ≥ t,Z,w)

= wh013(t) exp(β
T
13Z)

hc23(t|t1,Z,w) = lim
∆→0

∆−1 Pr(T2 ∈ [t, t +∆)]|T1 = t1,T2 ≥ t,Z,w)

= wh023(t) exp(β
T
23Z)

Limitations: the marginal distribution wrt w does not take a simple form and
includes the parameter of the frailty distribution.

Other relevant works: Lee et al. (2015); Jiang and Haneuse (2017).
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T1 - age at diagnosis, T2 - age at death

hc12(t|Z,w) = lim
∆→0

∆−1 Pr(T1 ∈ [t, t +∆)]|T1 ≥ t,T2 ≥ t,Z,w)

= wh012(t) exp(β
T
12Z)

hc13(t|Z,w) = lim
∆→0

∆−1 Pr(T2 ∈ [t, t +∆)]|T1 ≥ t,T2 ≥ t,Z,w)

= wh013(t) exp(β
T
13Z)

hc23(t|t1,Z,w) = lim
∆→0

∆−1 Pr(T2 ∈ [t, t +∆)]|T1 = t1,T2 ≥ t,Z,w)

= wh023(t) exp(β
T
23Z)

Limitations: the marginal distribution wrt w does not take a simple form and
includes the parameter of the frailty distribution.

Other relevant works: Lee et al. (2015); Jiang and Haneuse (2017).
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Illness-Death with Frailty and Cox-type Models - A Marginalized Approach

Instead of the approach (Xu et al., 2010):

hc12(t|Z,w) = whc012(t) exp(β
T
12Z)

hc13(t|Z,w) = whc013(t) exp(β
T
13Z)

hc23(t|t1,Z,w) = whc023(t) exp(β
T
23Z)

w in an unobserved subject-specific random effect.
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Illness-Death with Frailty and Cox-type Models - A Marginalized Approach

Gorfine et al. (2021) assume conditional hazards

hc12(t|Z,w) = wα12(t|Z)
hc13(t|Z,w) = wα13(t|Z)

hc23(t|t1,Z,w) = wα23(t|t1,Z)

w in an unobserved subject-specific random effect,

and marginal hazards (with
respect to w) of the form

h12(t|Z) = h012(t) exp(β
T
12Z)

h13(t|Z) = h013(t) exp(β
T
13Z)

h23(t|t1,Z) = h023(t) exp(β
T
23Z)

The functions αjk , jk ∈ {12, 13, 23}, are determined by the distribution of w and
the marginalized hazards.

The goal: estimating βjk and h012(·), jk ∈ {12, 13, 23}.
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Illness-Death with Frailty and AFT Models

An additive frailty-based AFT approach of Lee et al. (2017):

logT1 = βT
12Z+ w + ϵ12 ,T1 > 0

logT2 = βT
13Z+ w + ϵ13 ,T2 > 0 given being free of disease

logT2 = βT
23Z+ w + ϵ23 ,T2 > t1 > 0 given diagnosed at t1

Limitations: the conditional hazard does not admit a simple interpretation in
terms of the unobserved frailty w , and could be be a non-monotone function of w .
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Illness-Death with Frailty and AFT Models - an Alternative Approach

A marginalized frailty-based AFT approach
of Kats and Gorfine (2023):

logT1 = βT
12Z+ U12 ,T1 > 0

logT2 = βT
13Z+ U13 ,T2 > 0 given being free of disease

logT2 = βT
23Z+ U23 ,T2 > t1 > 0 given diagnosed at t1

U12,U13,U23 are random errors with unspecified distributions.

The dependence between T1

and T2 is incorporated via the following conditional baseline hazard functions of exp(Ujk ),
jk ∈ 12, 13, 23:

λ12(t|w) = wλ12(t) , t > 0

λ13(t|w) = wλ13(t) , t > 0 given being free of disease

λ23(s|t1,w) = wλ23(s) , s > t1 > 0 given diagnosed at t1

λjk (·) are unspecified, and w in an unobserved subject-specific random effect.

The hazards of this multiplicative model demonstrate monotonic increase as a function of w
across all error distributions. Consequently, this model offers a simpler interpretation regarding
the influence of unobserved frailty effects.
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Rotterdam Tumor bamk Data

1546 breast cancer patients who had node-positive disease and underwent a tumor removal
surgery.

(1) Tumor Removal (2) Relapse

(3) Death

Of the 1546 patients, 924 showed a relapse of the disease (63%), 106 died without evidence of
relapse (7%), and 771 patients died after a relapse (79% of the patients who showed a relapse
of the cancer).

Baseline Covariates: age at tumor removal, menopausal status, tumor size, tumor grade,
number of positive lymph nodes, levels of estrogen and progesterone receptors in the initial
biopsy, hormonal therapy, chemotherapy.

Our goal: modeling and estimating the transitions

1 → 2 1 → 3 2 → 3
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=

Est (SE) exp p-value Holm Est (SE) exp p-value Holm PM (SE) exp Credible interval

! 2.18 (0.73) - 0.003 0.058 2.52 (0.54) - 0.000 0.000 1.47 (0.23) - (1.046,1.956)

Transition: surgery→ relapse

Age at surgery (divided by 10) 0.14 (0.06) 1.15 0.012 0.185 −0.15 (0.06) 0.86 0.014 0.262 −0.22 (0.08) 0.80 (0.685,0.918)

log of lymph nodes −0.40 (0.05) 0.67 0.000 0.000 0.42 (0.04) 1.53 0.000 0.000 0.71 (0.07) 2.03 (1.795,2.326)

log of estrogen+1 0.07 (0.03) 1.07 0.030 0.390 −0.03 (0.02) 0.97 0.186 1.000 −0.10 (0.04) 0.90 (0.839,0.964)

log of progesterone+1 0.09 (0.02) 1.09 0.000 0.005 −0.04 (0.02) 0.96 0.065 1.000 −0.11 (0.03) 0.90 (0.845,0.958)

Postmenopausal (vs. premenopausal) −0.34 (0.15) 0.71 0.023 0.328 0.13 (0.13) 1.14 0.296 1.000 0.34 (0.19) 1.40 (0.980,2.081)

Tumor size (ref < 20mm)

20−50mm −0.32 (0.09) 0.73 0.001 0.015 0.20 (0.07) 1.22 0.006 0.116 0.40 (0.12) 1.49 (1.180,1.882)

> 50mm −0.49 (0.11) 0.61 0.000 0.000 0.38 (0.11) 1.46 0.001 0.020 0.79 (0.16) 2.19 (1.625,3.007)

Hormone therapy 0.60 (0.13) 1.83 0.000 0.000 −0.38 (0.08) 0.68 0.000 0.000 −0.88 (0.15) 0.41 (0.310,0.541)

Chemotherapy 0.49 (0.11) 1.64 0.000 0.000 −0.37 (0.11) 0.69 0.001 0.023 −0.79 (0.16) 0.46 (0.329,0.615)

Tumor grade 3 (vs. 2) −0.25 (0.09) 0.78 0.004 0.081 0.21 (0.08) 1.23 0.008 0.155 0.44 (0.13) 1.56 (1.216,1.986)

Transition: surgery→ death

Age at surgery (divided by 10) −0.43 (0.14) 0.65 0.002 0.051 1.32 (0.37) 3.74 0.000 0.009 1.43 (0.18) 4.20 (2.987,5.923)

log of lymph nodes −0.14 (0.08) 0.87 0.091 1.000 0.13 (0.12) 1.14 0.298 1.000 0.44 (0.15) 1.54 (1.163,2.092)

log of estrogen+1 0.04 (0.04) 1.04 0.287 1.000 −0.01 (0.06) 0.99 0.816 1.000 −0.11 (0.08) 0.89 (0.765,1.040)

log of progesterone+1 0.01 (0.04) 1.01 0.827 1.000 0.08 (0.06) 1.08 0.205 1.000 0.01 (0.07) 1.01 (0.884,1.163)

Postmenopausal (vs. premenopausal) −0.15 (0.34) 0.86 0.647 1.000 −0.30 (0.50) 0.74 0.554 1.000 −0.35 (0.70) 0.70 (0.179,2.997)

Tumor size (ref. < 20mm)

20–50mm −0.13 (0.15) 0.88 0.376 1.000 −0.16 (0.25) 0.85 0.526 1.000 −0.04 (0.28) 0.96 (0.554,1.653)

> 50mm −0.19 (0.18) 0.82 0.275 1.000 0.15 (0.31) 1.16 0.634 1.000 0.58 (0.35) 1.79 (0.933,3.488)

Hormone therapy 0.41 (0.18) 1.51 0.019 0.290 −0.21 (0.25) 0.81 0.389 1.000 −0.69 (0.29) 0.50 (0.275,0.851)

Chemotherapy 1.13 (0.30) 3.09 0.000 0.005 −0.22 (0.81) 0.81 0.789 1.000 −0.78 (0.63) 0.46 (0.130,1.531)

Tumor grade 3 (vs. 2) −0.06 (0.13) 0.94 0.641 1.000 −0.01 (0.28) 0.99 0.961 1.000 0.21 (0.27) 1.23 (0.750,2.148)

(Continues)

=

Transition: relapse→ death

Age at surgery (divided by 10) 0.00 (0.07) 1.00 0.956 1.000 0.03 (0.08) 1.03 0.700 1.000 0.08 (0.07) 1.08 (0.931,1.232)

log of lymph nodes −0.25 (0.07) 0.78 0.000 0.010 0.25 (0.05) 1.28 0.000 0.000 0.38 (0.07) 1.47 (1.271,1.687)

log of estrogen+1 0.04 (0.05) 1.04 0.341 1.000 −0.03 (0.02) 0.97 0.193 1.000 −0.10 (0.04) 0.90 (0.838,0.973)

log of progesterone+1 0.13 (0.04) 1.14 0.001 0.021 −0.08 (0.02) 0.92 0.000 0.003 −0.19 (0.04) 0.83 (0.771,0.884)

Postmenopausal (vs. premenopausal) −0.21 (0.17) 0.81 0.203 1.000 −0.05 (0.13) 0.95 0.731 1.000 0.04 (0.20) 1.04 (0.705,1.527)

Tumor size (ref. < 20mm)

20–50mm −0.37 (0.14) 0.69 0.008 0.131 0.23 (0.07) 1.26 0.001 0.024 0.46 (0.14) 1.58 (1.234,2.112)

> 50mm −0.52 (0.17) 0.60 0.002 0.044 0.40 (0.10) 1.49 0.000 0.002 0.67 (0.18) 1.96 (1.405,2.764)

Hormone therapy 0.39 (0.14) 1.48 0.005 0.090 −0.18 (0.09) 0.84 0.037 0.633 −0.48 (0.16) 0.62 (0.452,0.835)

Chemotherapy 0.23 (0.18) 1.25 0.205 1.000 −0.16 (0.13) 0.85 0.227 1.000 −0.18 (0.17) 0.84 (0.604,1.179)

Tumor grade 3 (vs. 2) −0.26 (0.13) 0.77 0.047 0.569 0.21 (0.09) 1.23 0.024 0.440 0.43 (0.14) 1.54 (1.177,2.034)

 15410420, 0, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/biom.13880 by Tel Aviv University, Wiley Online Library on [14/06/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
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Multistate Models with Frailty Approach

Existing frailty-based methods can be extended to other types of
multi-state models, but in some cases it could be challenging.

A relatively simple setting - multiple non-terminal events and a vector
of random effects (frailties) capturing multiple levels of dependence
among the event.

More “complex” multistate settings with frailties - could be changing.

Additional work is required to extend existing estimation methods to
the case of time dependent covariates with frailties.
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Thanks!
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