Malka Gorfine

Tel Aviv University, Israel http://www.tau.ac.il/~gorfinem/

Joint Work with

Richard Cook, Per K. Andersen, Terry M. Therneau, Hein Putter, Pierre Joly, Michal Abrahamowicz

45th ISCB 2024, Thessaloniki 1 / 19

• An increasing number of studies of human health rely on long-term follow-up of prospective or retrospective cohorts.

- An increasing number of studies of human health rely on long-term follow-up of prospective or retrospective cohorts.
- Participants' follow-up may end with different endpoint (e.g., various causes of death), and include developing some intermediate outcomes (e.g. cancer metastasis or a non-fatal stroke).

- An increasing number of studies of human health rely on long-term follow-up of prospective or retrospective cohorts.
- Participants' follow-up may end with different endpoint (e.g., various causes of death), and include developing some intermediate outcomes (e.g. cancer metastasis or a non-fatal stroke).
- Multistate modeling offers a versatile methodology for analyzing longitudinal processes involving transitions between different health states and alternative endpoints.

Fig. 3 Multistate model. Patients disease course transitions between 5 possible clinical states: mild or moderate, severe, critical, discharged, and deceased. Each transition was modeled using a set of Cox regression models, adjusting for right censoring, recurrent events, competing events, left truncation, and time-dependent covariates.

Rossman et al. (2021), Nature Communications.

Э

イロト 不得下 イヨト イヨト

 Based on our multi-state analysis, we predict at the patient level, (given age, sex and state at time of hospitalization) the following quantities:

- Based on our multi-state analysis, we predict at the patient level, (given age, sex and state at time of hospitalization) the following quantities:
 - The chance of in-hospital mortality.

- Based on our multi-state analysis, we predict at the patient level, (given age, sex and state at time of hospitalization) the following quantities:
 - The chance of in-hospital mortality.
 - The chance of being at a critical state.

- Based on our multi-state analysis, we predict at the patient level, (given age, sex and state at time of hospitalization) the following quantities:
 - The chance of in-hospital mortality.
 - The chance of being at a critical state.
 - The total length of stay in hospital.

- Based on our multi-state analysis, we predict at the patient level, (given age, sex and state at time of hospitalization) the following quantities:
 - The chance of in-hospital mortality.
 - The chance of being at a critical state.
 - The total length of stay in hospital.
 - The total length of stay in critical state.

- Based on our multi-state analysis, we predict at the patient level, (given age, sex and state at time of hospitalization) the following quantities:
 - The chance of in-hospital mortality.
 - The chance of being at a critical state.
 - The total length of stay in hospital.
 - The total length of stay in critical state.
- Based on the above predictions, we went one step further and provided **predictions at the hospital level**

- Based on our multi-state analysis, we predict at the patient level, (given age, sex and state at time of hospitalization) the following quantities:
 - The chance of in-hospital mortality.
 - The chance of being at a critical state.
 - The total length of stay in hospital.
 - The total length of stay in critical state.

• Based on the above predictions, we went one step further and provided **predictions at the hospital level**

• At a given calendar day with the current state and hospitalization history of all the COVID-19 patients currently at a specific hospital, we predicted the total number of patients at the hospital, and at a critical clinical state in particular, for each day over the next 8 weeks.

- Based on our multi-state analysis, we predict at the patient level, (given age, sex and state at time of hospitalization) the following quantities:
 - The chance of in-hospital mortality.
 - The chance of being at a critical state.
 - The total length of stay in hospital.
 - The total length of stay in critical state.

• Based on the above predictions, we went one step further and provided **predictions at the hospital level**

- At a given calendar day with the current state and hospitalization history of all the COVID-19 patients currently at a specific hospital, we predicted the total number of patients at the hospital, and at a critical clinical state in particular, for each day over the next 8 weeks.
- We provided a prediction for the total occupancy on a calendar scale, for any real or hypothetical arrival scenario.

Additional Examples

The paper includes various topics:

• Intensity-based models.

- Intensity-based models.
- Delayed entry and incomplete data on process history.

- Intensity-based models.
- Delayed entry and incomplete data on process history.
- Inference for Marginal Parameters and Pseudo-values.

- Intensity-based models.
- Delayed entry and incomplete data on process history.
- Inference for Marginal Parameters and Pseudo-values.
- Intermittent observations.

- Intensity-based models.
- Delayed entry and incomplete data on process history.
- Inference for Marginal Parameters and Pseudo-values.
- Intermittent observations.
- Multistate models with frailty approach.

- Intensity-based models.
- Delayed entry and incomplete data on process history.
- Inference for Marginal Parameters and Pseudo-values.
- Intermittent observations.
- Multistate models with frailty approach.
- Software availability.

Within the framework of multistate survival models, two distinct contexts could be of practical importance:

Within the framework of multistate survival models, two distinct contexts could be of practical importance:

- Within-subject dependence: the sample comprises of independent individuals and random effects accounting for subject-specific unobserved covariates.
- Between-subjects dependence: the dataset consists of clustered data, such as families or centers, where failure times of individuals within each cluster are presumed to be correlated.

Example: the Rotterdam tumor bank of 1546 breast cancer patients who had node-positive disease and underwent a tumor removal surgery.

Example: the Rotterdam tumor bank of 1546 breast cancer patients who had node-positive disease and underwent a tumor removal surgery.

An illness-death setting:

Example: the Rotterdam tumor bank of 1546 breast cancer patients who had node-positive disease and underwent a tumor removal surgery.

An illness-death setting:

Of the 1546 patients, 924 showed a relapse of the disease (63%), 106 died without evidence of relapse (7%), and 771 patients died after a relapse (79% of the patients who showed a relapse of the cancer).

Example: the Rotterdam tumor bank of 1546 breast cancer patients who had node-positive disease and underwent a tumor removal surgery.

An illness-death setting:

Of the 1546 patients, 924 showed a relapse of the disease (63%), 106 died without evidence of relapse (7%), and 771 patients died after a relapse (79% of the patients who showed a relapse of the cancer).

Baseline Covariates: age at tumor removal, menopausal status, tumor size, tumor grade, number of positive lymph nodes, levels of estrogen and progesterone receptors in the initial biopsy, hormonal therapy, chemotherapy.

イモトイモト

Image: A matrix and a matrix

Example: the Rotterdam tumor bank of 1546 breast cancer patients who had node-positive disease and underwent a tumor removal surgery.

An illness-death setting:

Of the 1546 patients, 924 showed a relapse of the disease (63%), 106 died without evidence of relapse (7%), and 771 patients died after a relapse (79% of the patients who showed a relapse of the cancer).

Baseline Covariates: age at tumor removal, menopausal status, tumor size, tumor grade, number of positive lymph nodes, levels of estrogen and progesterone receptors in the initial biopsy, hormonal therapy, chemotherapy.

Our goal: modeling and estimating the transitions

 $1 \rightarrow 2 \quad 1 \rightarrow 3 \quad 2 \rightarrow 3$

Malka Gorfine (TAU, Israel)

イロト イポト イヨト イヨト

Illness-Death Cox and AFT models - methods and software

Table: Models Estimation Procedures and Software

(1) Healthy

(3)								
Authors	Model	Estimation Procedure	Software					
Xu et al. (Biometrics, 2010)	Cox, gamma frailty, semiparametric	Semi-parametric MLE	None					
Lee et al. (JRSS-C, 2015)	Cox, gamma frailty, semiparametric	Bayesian	R package SemicompRisks					
Jiang and Haneuse (SJS, 2017)	Transformation model, known transformation function, non-parametric frailty at the price of known error distribution	Semiparametric efficient score	None					
Lee et al. (2017)	AFT, additive normal frailty, parametric and semiparametric	Bayesian	R package SemicompRisks					
Gorfine et al. (JASA, 2021)	Cox, marginalized gamma frailty, semiparametric	Pseudo- likelihood approach	GitHub - frailty-LTRC					
Katz and Gorfine (Biometrics, 2023)	AFT, multiplicative gamma frailty, semiparametric	Semi-parametric MLE	GitHub - semicompAFT					

(2) Disease

Frailty-based Cox-type approach of Xu et al. (2010): (1) Healthy (2) Disease w in an unobserved subject-specific random effect (frailty). (3) Death

 \mathcal{T}_1 - age at diagnosis, \mathcal{T}_2 - age at death

$$h_{12}^c(t|\mathbf{Z},\mathbf{w}) = \lim_{\Delta o 0} \Delta^{-1} \Pr(T_1 \in [t,t+\Delta)] | T_1 \ge t, T_2 \ge t, \mathbf{Z}, \mathbf{w})$$

Frailty-based Cox-type approach of Xu et al. (2010): (1) Healthy (2) Disease w in an unobserved subject-specific random effect (frailty). (3) Death

 \mathcal{T}_1 - age at diagnosis, \mathcal{T}_2 - age at death

$$\begin{split} h_{12}^c(t|\mathbf{Z}, \mathbf{w}) &= \lim_{\Delta \to 0} \Delta^{-1} \Pr(T_1 \in [t, t + \Delta)] | T_1 \geq t, T_2 \geq t, \mathbf{Z}, \mathbf{w}) \\ &= w h_{012}(t) \exp(\beta_{12}^T \mathbf{Z}) \end{split}$$

Frailty-based Cox-type approach of Xu et al. (2010): (1) Healthy w in an unobserved subject-specific random effect (frailty).

 ${\cal T}_1$ - age at diagnosis, ${\cal T}_2$ - age at death

$$\begin{aligned} h_{12}^c(t|\mathbf{Z}, \mathbf{w}) &= \lim_{\Delta \to 0} \Delta^{-1} \Pr(T_1 \in [t, t + \Delta)] | T_1 \ge t, T_2 \ge t, \mathbf{Z}, \mathbf{w}) \\ &= w h_{012}(t) \exp(\beta_{12}^T \mathbf{Z}) \\ h_{13}^c(t|\mathbf{Z}, \mathbf{w}) &= \lim_{\Delta \to 0} \Delta^{-1} \Pr(T_2 \in [t, t + \Delta)] | T_1 \ge t, T_2 \ge t, \mathbf{Z}, \mathbf{w}) \end{aligned}$$

(2) Disease

Frailty-based Cox-type approach of Xu et al. (2010): (1) Healthy w in an unobserved subject-specific random effect (frailty).

 ${\cal T}_1$ - age at diagnosis, ${\cal T}_2$ - age at death

$$\begin{aligned} h_{12}^c(t|\mathbf{Z}, \mathbf{w}) &= \lim_{\Delta \to 0} \Delta^{-1} \Pr(T_1 \in [t, t + \Delta)] | T_1 \ge t, T_2 \ge t, \mathbf{Z}, \mathbf{w}) \\ &= w h_{012}(t) \exp(\beta_{12}^T \mathbf{Z}) \\ h_{13}^c(t|\mathbf{Z}, \mathbf{w}) &= \lim_{\Delta \to 0} \Delta^{-1} \Pr(T_2 \in [t, t + \Delta)] | T_1 \ge t, T_2 \ge t, \mathbf{Z}, \mathbf{w}) \\ &= w h_{013}(t) \exp(\beta_{13}^T \mathbf{Z}) \end{aligned}$$

(2) Disease

Frailty-based Cox-type approach of Xu et al. (2010): (1) Healthy w in an unobserved subject-specific random effect (frailty).

 \mathcal{T}_1 - age at diagnosis, \mathcal{T}_2 - age at death

$$\begin{split} h_{12}^c(t|\mathbf{Z}, \mathbf{w}) &= \lim_{\Delta \to 0} \Delta^{-1} \Pr(T_1 \in [t, t + \Delta)] | T_1 \ge t, T_2 \ge t, \mathbf{Z}, \mathbf{w}) \\ &= w h_{012}(t) \exp(\beta_{12}^T \mathbf{Z}) \\ h_{13}^c(t|\mathbf{Z}, \mathbf{w}) &= \lim_{\Delta \to 0} \Delta^{-1} \Pr(T_2 \in [t, t + \Delta)] | T_1 \ge t, T_2 \ge t, \mathbf{Z}, \mathbf{w}) \\ &= w h_{013}(t) \exp(\beta_{13}^T \mathbf{Z}) \\ h_{23}^c(t|t_1, \mathbf{Z}, \mathbf{w}) &= \lim_{\Delta \to 0} \Delta^{-1} \Pr(T_2 \in [t, t + \Delta)] | T_1 = t_1, T_2 \ge t, \mathbf{Z}, \mathbf{w}) \end{split}$$

(2) Disease

Frailty-based Cox-type approach of Xu et al. (2010): (1) Healthy w in an unobserved subject-specific random effect (frailty).

 ${\cal T}_1$ - age at diagnosis, ${\cal T}_2$ - age at death

$$\begin{aligned} h_{12}^c(t|\mathbf{Z}, \mathbf{w}) &= \lim_{\Delta \to 0} \Delta^{-1} \Pr(T_1 \in [t, t + \Delta)] | T_1 \ge t, T_2 \ge t, \mathbf{Z}, \mathbf{w}) \\ &= w h_{012}(t) \exp(\beta_{12}^T \mathbf{Z}) \\ h_{13}^c(t|\mathbf{Z}, \mathbf{w}) &= \lim_{\Delta \to 0} \Delta^{-1} \Pr(T_2 \in [t, t + \Delta)] | T_1 \ge t, T_2 \ge t, \mathbf{Z}, \mathbf{w}) \\ &= w h_{013}(t) \exp(\beta_{13}^T \mathbf{Z}) \\ h_{23}^c(t|t_1, \mathbf{Z}, \mathbf{w}) &= \lim_{\Delta \to 0} \Delta^{-1} \Pr(T_2 \in [t, t + \Delta)] | T_1 = t_1, T_2 \ge t, \mathbf{Z}, \mathbf{w}) \end{aligned}$$

$$= w h_{023}(t) \exp(\beta_{23}^T \mathbf{Z})$$

(2) Disease

Frailty-based Cox-type approach of Xu et al. (2010): (1) Healthy w in an unobserved subject-specific random effect (frailty).

 T_1 - age at diagnosis, T_2 - age at death

$$\begin{split} h_{12}^c(t|\mathbf{Z}, \mathbf{w}) &= \lim_{\Delta \to 0} \Delta^{-1} \Pr(T_1 \in [t, t + \Delta)] | T_1 \ge t, \, T_2 \ge t, \mathbf{Z}, \mathbf{w}) \\ &= w h_{012}(t) \exp(\beta_{12}^T \mathbf{Z}) \\ h_{13}^c(t|\mathbf{Z}, \mathbf{w}) &= \lim_{\Delta \to 0} \Delta^{-1} \Pr(T_2 \in [t, t + \Delta)] | T_1 \ge t, \, T_2 \ge t, \mathbf{Z}, \mathbf{w}) \\ &= w h_{013}(t) \exp(\beta_{13}^T \mathbf{Z}) \\ h_{23}^c(t|t_1, \mathbf{Z}, \mathbf{w}) &= \lim_{\Delta \to 0} \Delta^{-1} \Pr(T_2 \in [t, t + \Delta)] | T_1 = t_1, \, T_2 \ge t, \mathbf{Z}, \mathbf{w}) \\ &= w h_{023}(t) \exp(\beta_{23}^T \mathbf{Z}) \end{split}$$

Limitations: the marginal distribution wrt w does not take a simple form and includes the parameter of the frailty distribution.

Other relevant works: Lee et al. (2015); Jiang and Haneuse (2017).

Malka Gorfine (TAU, Israel)

(2) Disease

Instead of the approach (Xu et al., 2010):

$h_{12}^c(t \mathbf{Z}, \mathbf{w})$	=	$\boldsymbol{w} h_{012}^c(t) \exp(\beta_{12}^T \mathbf{Z})$
$h_{13}^{c}(t \mathbf{Z},\mathbf{w})$	=	$wh_{013}^{c}(t)\exp(\beta_{13}^{T}\mathbf{Z})$
$h_{23}^{c}(t t_1, \mathbf{Z}, \mathbf{w})$	=	$wh_{023}^{c}(t)\exp(\beta_{23}^{T}\mathbf{Z})$

w in an unobserved subject-specific random effect.

Illness-Death with Frailty and Cox-type Models - A Marginalized Approach

Gorfine et al. (2021) assume conditional hazards

$$\begin{array}{rcl} h_{12}^{c}(t|{\bf Z},{\bf w}) &=& {\bf w}\alpha_{12}(t|{\bf Z}) \\ h_{13}^{c}(t|{\bf Z},{\bf w}) &=& {\bf w}\alpha_{13}(t|{\bf Z}) \\ h_{23}^{c}(t|t_{1},{\bf Z},{\bf w}) &=& {\bf w}\alpha_{23}(t|t_{1},{\bf Z}) \end{array}$$

w in an unobserved subject-specific random effect,

Gorfine et al. (2021) assume conditional hazards

(1) Healthy

w in an unobserved subject-specific random effect, and marginal hazards (with respect to w) of the form

$$\begin{array}{lll} h_{12}(t|\mathbf{Z}) &=& h_{012}(t) \exp(\beta_{12}^{T}\mathbf{Z}) \\ h_{13}(t|\mathbf{Z}) &=& h_{013}(t) \exp(\beta_{13}^{T}\mathbf{Z}) \\ h_{23}(t|t_{1},\mathbf{Z}) &=& h_{023}(t) \exp(\beta_{23}^{T}\mathbf{Z}) \end{array}$$

(2) Disease

Gorfine et al. (2021) assume conditional hazards

(1) Healthy

w in an unobserved subject-specific random effect, and marginal hazards (with respect to w) of the form

$$\begin{array}{rcl} h_{12}(t|\mathbf{Z}) &=& h_{012}(t) \exp(\beta_{12}^{T} \mathbf{Z}) \\ h_{13}(t|\mathbf{Z}) &=& h_{013}(t) \exp(\beta_{13}^{T} \mathbf{Z}) \\ h_{23}(t|t_{1},\mathbf{Z}) &=& h_{023}(t) \exp(\beta_{23}^{T} \mathbf{Z}) \end{array}$$

The functions α_{jk} , $jk \in \{12, 13, 23\}$, are determined by the distribution of w and the marginalized hazards.

イロト イボト イヨト イヨト

(2) Disease

Gorfine et al. (2021) assume conditional hazards

(1) Healthy

w in an unobserved subject-specific random effect, and marginal hazards (with respect to w) of the form

$$\begin{array}{lll} h_{12}(t|\mathbf{Z}) &=& h_{012}(t) \exp(\beta_{12}^{T}\mathbf{Z}) \\ h_{13}(t|\mathbf{Z}) &=& h_{013}(t) \exp(\beta_{13}^{T}\mathbf{Z}) \\ h_{23}(t|t_{1},\mathbf{Z}) &=& h_{023}(t) \exp(\beta_{23}^{T}\mathbf{Z}) \end{array}$$

The functions α_{jk} , $jk \in \{12, 13, 23\}$, are determined by the distribution of w and the marginalized hazards.

The goal: estimating β_{jk} and $h_{012}(\cdot)$, $jk \in \{12, 13, 23\}$.

Malka Gorfine (TAU, Israel)

(2) Disease

Illness-Death with Frailty and AFT Models

An additive frailty-based AFT approach of Lee et al. (2017):

$$\begin{array}{rcl} \log \, T_1 & = & \beta_{12}^T \mathbf{Z} + \mathbf{w} + \epsilon_{12} &, T_1 > 0 \\ \log \, T_2 & = & \beta_{13}^T \mathbf{Z} + \mathbf{w} + \epsilon_{13} &, T_2 > 0 \, \text{given being free of disease} \\ \log \, T_2 & = & \beta_{23}^T \mathbf{Z} + \mathbf{w} + \epsilon_{23} &, T_2 > t_1 > 0 \, \text{given diagnosed at} \, t_1 \end{array}$$

Limitations: the conditional hazard does not admit a simple interpretation in terms of the unobserved frailty w, and could be be a non-monotone function of w.

Illness-Death with Frailty and AFT Models - an Alternative Approach

A marginalized frailty-based AFT approach of Kats and Gorfine (2023):

 $\log T_1 = \\ \log T_2 = \\ \log T_2 =$

$$\beta_{12}^{T} \mathbf{Z} + U_{12} , T_{1} > 0$$
(3) Death
$$\beta_{13}^{T} \mathbf{Z} + U_{13} , T_{2} > 0 \text{ given being free of disease}$$

$$\beta_{23}^{T} \mathbf{Z} + U_{23} , T_{2} > t_{1} > 0 \text{ given diagnosed at } t_{1}$$

 U_{12}, U_{13}, U_{23} are random errors with unspecified distributions.

Illness-Death with Frailty and AFT Models - an Alternative Approach

A marginalized frailty-based AFT approach of Kats and Gorfine (2023):

 U_{12}, U_{13}, U_{23} are random errors with unspecified distributions. The dependence between T_1 and T_2 is incorporated via the following conditional baseline hazard functions of $exp(U_{ik})$, $ik \in 12, 13, 23$:

 $\lambda_{ik}(\cdot)$ are unspecified, and w in an unobserved subject-specific random effect.

イロト イヨト イヨト

Illness-Death with Frailty and AFT Models - an Alternative Approach

A marginalized frailty-based AFT approach of Kats and Gorfine (2023):

alty-based AFT approach
ne (2023):

$$\log T_1 = \beta_{12}^T \mathbf{Z} + U_{12} , T_1 > 0$$
(3) Death

$$\log T_2 = \beta_{13}^T \mathbf{Z} + U_{13} , T_2 > 0 \text{ given being free of disease}$$

$$\log T_2 = \beta_{13}^T \mathbf{Z} + U_{23} , T_2 > t_1 > 0 \text{ given diagnosed at } t_1$$

 U_{12}, U_{13}, U_{23} are random errors with unspecified distributions. The dependence between T_1 and T_2 is incorporated via the following conditional baseline hazard functions of $exp(U_{jk})$, $jk \in 12, 13, 23$:

$$\begin{array}{lll} \lambda_{12}(t|w) &=& w\lambda_{12}(t) \ ,t>0\\ \lambda_{13}(t|w) &=& w\lambda_{13}(t) \ ,t>0 \ \text{given being free of disease}\\ \lambda_{23}(s|t_1,w) &=& w\lambda_{23}(s) \ ,s>t_1>0 \ \text{given diagnosed at }t_1 \end{array}$$

 $\lambda_{jk}(\cdot)$ are unspecified, and w in an unobserved subject-specific random effect.

The hazards of this multiplicative model demonstrate monotonic increase as a function of w across all error distributions. Consequently, this model offers a simpler interpretation regarding the influence of unobserved frailty effects.

Malka Gorfine (TAU, Israel)

Rotterdam Tumor bamk Data

 $1546\ \text{breast}\ \text{cancer}\ \text{patients}\ \text{who}\ \text{had}\ \text{node-positive}\ \text{disease}\ \text{and}\ \text{underwent}\ \text{a}\ \text{tumor}\ \text{removal}\ \text{surgery}.$

Of the 1546 patients, 924 showed a relapse of the disease (63%), 106 died without evidence of relapse (7%), and 771 patients died after a relapse (79% of the patients who showed a relapse of the cancer).

<u>Baseline Covariates</u>: age at tumor removal, menopausal status, tumor size, tumor grade, number of positive lymph nodes, levels of estrogen and progesterone receptors in the initial biopsy, hormonal therapy, chemotherapy.

Our goal: modeling and estimating the transitions

$$1 \rightarrow 2 \quad 1 \rightarrow 3 \quad 2 \rightarrow 3$$

イモトイモト

	AFT-multiplicative			Cox-marginalized			Cox-conditional				
	Est (SE)	exp	p-value	Holm	Est (SE)	exp	p-value	Holm	PM (SE)	exp	Credible interval
σ	2.18 (0.73)	-	0.003	0.058	2.52 (0.54)	-	0.000	0.000	1.47 (0.23)	-	(1.046,1.956)
Transition: surgery \rightarrow relapse											
Age at surgery (divided by 10)	0.14 (0.06)	1.15	0.012	0.185	-0.15 (0.06)	0.86	0.014	0.262	-0.22 (0.08)	0.80	(0.685,0.918)
log of lymph nodes	-0.40 (0.05)	0.67	0.000	0.000	0.42 (0.04)	1.53	0.000	0.000	0.71 (0.07)	2.03	(1.795,2.326)
log of estrogen+1	0.07 (0.03)	1.07	0.030	0.390	-0.03 (0.02)	0.97	0.186	1.000	-0.10 (0.04)	0.90	(0.839,0.964)
log of progesterone+1	0.09 (0.02)	1.09	0.000	0.005	-0.04 (0.02)	0.96	0.065	1.000	-0.11 (0.03)	0.90	(0.845,0.958)
Postmenopausal (vs. premenopausal)	-0.34 (0.15)	0.71	0.023	0.328	0.13 (0.13)	1.14	0.296	1.000	0.34 (0.19)	1.40	(0.980,2.081)
Tumor size (ref < 20 mm)											
20–50 mm	-0.32 (0.09)	0.73	0.001	0.015	0.20 (0.07)	1.22	0.006	0.116	0.40 (0.12)	1.49	(1.180,1.882)
> 50 mm	-0.49 (0.11)	0.61	0.000	0.000	0.38 (0.11)	1.46	0.001	0.020	0.79 (0.16)	2.19	(1.625,3.007)
Hormone therapy	0.60 (0.13)	1.83	0.000	0.000	-0.38 (0.08)	0.68	0.000	0.000	-0.88 (0.15)	0.41	(0.310,0.541)
Chemotherapy	0.49 (0.11)	1.64	0.000	0.000	-0.37 (0.11)	0.69	0.001	0.023	-0.79 (0.16)	0.46	(0.329,0.615)
Tumor grade 3 (vs. 2)	-0.25 (0.09)	0.78	0.004	0.081	0.21 (0.08)	1.23	0.008	0.155	0.44 (0.13)	1.56	(1.216,1.986)
Transition: surgery \rightarrow death											
Age at surgery (divided by 10)	-0.43 (0.14)	0.65	0.002	0.051	1.32 (0.37)	3.74	0.000	0.009	1.43 (0.18)	4.20	(2.987,5.923)
log of lymph nodes	-0.14 (0.08)	0.87	0.091	1.000	0.13 (0.12)	1.14	0.298	1.000	0.44 (0.15)	1.54	(1.163,2.092)
log of estrogen+1	0.04 (0.04)	1.04	0.287	1.000	-0.01 (0.06)	0.99	0.816	1.000	-0.11 (0.08)	0.89	(0.765,1.040)
log of progesterone+1	0.01 (0.04)	1.01	0.827	1.000	0.08 (0.06)	1.08	0.205	1.000	0.01 (0.07)	1.01	(0.884,1.163)
Postmenopausal (vs. premenopausal)	-0.15 (0.34)	0.86	0.647	1.000	-0.30 (0.50)	0.74	0.554	1.000	-0.35 (0.70)	0.70	(0.179,2.997)
Tumor size (ref. < 20 mm)											
20–50 mm	-0.13 (0.15)	0.88	0.376	1.000	-0.16 (0.25)	0.85	0.526	1.000	-0.04 (0.28)	0.96	(0.554,1.653)
> 50 mm	-0.19 (0.18)	0.82	0.275	1.000	0.15 (0.31)	1.16	0.634	1.000	0.58 (0.35)	1.79	(0.933,3.488)
Hormone therapy	0.41 (0.18)	1.51	0.019	0.290	-0.21 (0.25)	0.81	0.389	1.000	-0.69 (0.29)	0.50	(0.275,0.851)
Chemotherapy	1.13 (0.30)	3.09	0.000	0.005	-0.22 (0.81)	0.81	0.789	1.000	-0.78 (0.63)	0.46	(0.130,1.531)
Tumor grade 3 (vs. 2)	-0.06 (0.13)	0.94	0.641	1.000	-0.01 (0.28)	0.99	0.961	1.000	0.21 (0.27)	1.23	(0.750,2.148)
$Transition: relapse \rightarrow death$											(0
Age at surgery (divided by 10)	0.00 (0.07)	1.00	0.956	1.000	0.03 (0.08)	1.03	0.700	1.000	0.08 (0.07)	1.08	(0.931,1.232)
log of lymph nodes	-0.25 (0.07)	0.78	0.000	0.010	0.25 (0.05)	1.28	0.000	0.000	0.38 (0.07)	1.47	(1.271,1.687)
log of estrogen+1	0.04 (0.05)	1.04	0.341	1.000	-0.03 (0.02)	0.97	0.193	1.000	-0.10 (0.04)	0.90	(0.838,0.973)
log of progesterone+1	0.13 (0.04)	1.14	0.001	0.021	-0.08 (0.02)	0.92	0.000	0.003	-0.19 (0.04)	0.83	(0.771,0.884)
Postmenopausal (vs. premenopausal)	-0.21 (0.17)	0.81	0.203	1.000	-0.05 (0.13)	0.95	0.731	1.000	0.04 (0.20)	1.04	(0.705,1.527)
Tumor size (ref. < 20 mm)											
20–50 mm	-0.37 (0.14)	0.69	0.008	0.131	0.23 (0.07)	1.26	0.001	0.024	0.46 (0.14)	1.58	(1.234,2.112)
> 50 mm	-0.52 (0.17)	0.60	0.002	0.044	0.40 (0.10)	1.49	0.000	0.002	0.67 (0.18)	1.96	(1.405,2.764)
Hormone therapy	0.39 (0.14)	1.48	0.005	0.090	-0.18 (0.09)	0.84	0.037	0.633	-0.48 (0.16)	0.62	(0.452,0.835)
Chemotherapy	0.23 (0.18)	1.25	0.205	1.000	-0.16 (0.13)	0.85	0.227	1.000	-0.18 (0.17)	0.84	(0.604,1.179)
Tumor grade 3 (vs. 2)	-0.26 (0.13)	0.77	0.047	0.569	0.21 (0.09)	1.23	0.024	0.440	0.43 (0.14)	1.54	(1.177,2.034)

AFT – additive: Lee et al. (2017) resulted in convergence failure (due to the use of sojourn time which is negatively correlated with time from surgery to relapse).

AFT- multiplicative: Katz & Gorfine (2023)

Cox – marginalized: Gorfine et al. (2021)

Cox-conditional: Lee et al. (2015)

Results:

Strong dependence between within-subject failure times.
The directions of the covariates' effect under these models are similar, but inference results are somewhat different.

- GOF assessment: models lacking frailty exhibit poorer fit to the data compared to the models that incorporate frailty (Katz & Gorfine, 2023).

590

<ロト < 団 > < 巨 > < 巨 > 三 三

• Existing frailty-based methods can be extended to other types of multi-state models, but in some cases it could be challenging.

- Existing frailty-based methods can be extended to other types of multi-state models, but in some cases it could be challenging.
- A relatively simple setting multiple non-terminal events and a vector of random effects (frailties) capturing multiple levels of dependence among the event.

- Existing frailty-based methods can be extended to other types of multi-state models, but in some cases it could be challenging.
- A relatively simple setting multiple non-terminal events and a vector of random effects (frailties) capturing multiple levels of dependence among the event.
- More "complex" multistate settings with frailties could be changing.

- Existing frailty-based methods can be extended to other types of multi-state models, but in some cases it could be challenging.
- A relatively simple setting multiple non-terminal events and a vector of random effects (frailties) capturing multiple levels of dependence among the event.
- More "complex" multistate settings with frailties could be changing.
- Additional work is required to extend existing estimation methods to the case of time dependent covariates with frailties.

Ξ

イロト イヨト イヨト イヨト

- Gorfine, M., N. Keret, A. Ben Arie, D. Zucker, and L. Hsu (2021). Marginalized frailty-based illness-death model: application to the uk-biobank survival data. *Journal of the American Statistical Association 116*(535), 1155–1167.
- Jiang, F. and S. Haneuse (2017). A semi-parametric transformation frailty model for semi-competing risks survival data. Scandinavian Journal of Statistics 44(1), 112–129.
- Kats, L. and M. Gorfine (2023). An accelerated failure time regression model for illness-death data: A frailty approach. *Biometrics* 79(4), 3066–3081.
- Lee, K. H., S. Haneuse, D. Schrag, and F. Dominici (2015). Bayesian semi-parametric analysis of semi-competing risks data: Investigating hospital readmission after a pancreatic cancer diagnosis. *Journal of the Royal Statistical Society. Series C, Applied statistics 64*(2), 253.
- Lee, K. H., V. Rondeau, and S. Haneuse (2017). Accelerated failure time models for semi-competing risks data in the presence of complex censoring. *Biometrics* 73(4), 1401–1412.
- Rossman, H., T. Meir, J. Somer, S. Shilo, R. Gutman, A. Ben Arie, E. Segal, U. Shalit, and M. Gorfine (2021). Hospital load and increased covid-19 related mortality in israel. *Nature communications* 12(1), 1904.
- Xu, J., J. D. Kalbfleisch, and B. Tai (2010). Statistical analysis of illness-death processes and semicompeting risks data. *Biometrics* 66(3), 716–725.

イロト 不得下 イヨト イヨト 二日