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Introduction

@ An increasing number of studies of human health rely on long-term
follow-up of prospective or retrospective cohorts.

Malka Gorfine (TAU, Israel) 45th ISCB 2024, Thessaloniki  2/19



Introduction

@ An increasing number of studies of human health rely on long-term
follow-up of prospective or retrospective cohorts.

@ Participants’ follow-up may end with different endpoint (e.g., various
causes of death), and include developing some intermediate outcomes
(e.g. cancer metastasis or a non-fatal stroke).

Malka Gorfine (TAU, Israel) 45th ISCB 2024, Thessaloniki  2/19



Introduction

@ An increasing number of studies of human health rely on long-term
follow-up of prospective or retrospective cohorts.

@ Participants’ follow-up may end with different endpoint (e.g., various
causes of death), and include developing some intermediate outcomes
(e.g. cancer metastasis or a non-fatal stroke).

@ Multistate modeling offers a versatile methodology for analyzing
longitudinal processes involving transitions between different health
states and alternative endpoints.
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Example - COVID19 Patients Disease Course

Hospitalization States:

Mild / Moderate

A

Severe

Critical

Discharged Deceased

Fig. 3 Multistate model. Patients disease course transitions between 5 possible clinical states: mild or moderate, severe, critical, discharged, and deceased.
Each transition was modeled using a set of Cox regression models, adjusting for right censoring, recurrent events, competing events, left truncation, and

time-dependent covariates.

Rossman et al. (2021), Nature
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Example - COVID19 Patients Disease Course

@ Based on our multi-state analysis, we predict at the patient level,
(given age, sex and state at time of hospitalization) the following
quantities:
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@ Based on our multi-state analysis, we predict at the patient level,
(given age, sex and state at time of hospitalization) the following
quantities:

e The chance of in-hospital mortality.

e The chance of being at a critical state.
e The total length of stay in hospital.

e The total length of stay in critical state.

@ Based on the above predictions, we went one step further and
provided predictions at the hospital level
e At a given calendar day with the current state and hospitalization
history of all the COVID-19 patients currently at a specific hospital, we
predicted the total number of patients at the hospital, and at a critical
clinical state in particular, for each day over the next 8 weeks.
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Example - COVID19 Patients Disease Course

@ Based on our multi-state analysis, we predict at the patient level,
(given age, sex and state at time of hospitalization) the following
quantities:

e The chance of in-hospital mortality.

e The chance of being at a critical state.
e The total length of stay in hospital.

e The total length of stay in critical state.

@ Based on the above predictions, we went one step further and
provided predictions at the hospital level
e At a given calendar day with the current state and hospitalization
history of all the COVID-19 patients currently at a specific hospital, we
predicted the total number of patients at the hospital, and at a critical
clinical state in particular, for each day over the next 8 weeks.
o We provided a prediction for the total occupancy on a calendar scale,
for any real or hypothetical arrival scenario.
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Additional Examples

a) A 2-state failure process b) A recurrent event process

d) A 4-state illness-death process e) A reversible illness-death process f) A competing-risks process
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An Overview and Recent Developments in the Analysis of

Multistate Processes

The paper includes various topics:

@ Intensity-based models.
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An Overview and Recent Developments in the Analysis of

Multistate Processes

The paper includes various topics:

@ Intensity-based models.

Delayed entry and incomplete data on process history.

Inference for Marginal Parameters and Pseudo-values.

@ Intermittent observations.

Multistate models with frailty approach.
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An Overview and Recent Developments in the Analysis of

Multistate Processes

The paper includes various topics:

@ Intensity-based models.

Delayed entry and incomplete data on process history.

Inference for Marginal Parameters and Pseudo-values.

Intermittent observations.

Multistate models with frailty approach.

Software availability.
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Multistate Models with Frailty Approach

Within the framework of multistate survival models, two distinct contexts
could be of practical importance:
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Multistate Models with Frailty Approach

Within the framework of multistate survival models, two distinct contexts
could be of practical importance:

@ Within-subject dependence: the sample comprises of independent
individuals and random effects accounting for subject-specific
unobserved covariates.

@ Between-subjects dependence: the dataset consists of clustered data,
such as families or centers, where failure times of individuals within
each cluster are presumed to be correlated.
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Multistate Models - Within-Subject Random Effect

Example: the Rotterdam tumor bank of 1546 breast cancer patients who had node-positive
disease and underwent a tumor removal surgery.
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An illness-death setting:

(1) Tumor Removal

(2) Relapse

Of the 1546 patients, 924 showed a relapse of the disease (63%), 106 died without evidence of
relapse (7%), and 771 patients died after a relapse (79% of the patients who showed a relapse
of the cancer).

Baseline Covariates: age at tumor removal, menopausal status, tumor size, tumor grade,
number of positive lymph nodes, levels of estrogen and progesterone receptors in the initial
biopsy, hormonal therapy, chemotherapy.
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Multistate Models - Within-Subject Random Effect

Example: the Rotterdam tumor bank of 1546 breast cancer patients who had node-positive
disease and underwent a tumor removal surgery.

An illness-death setting:

(1) Tumor Removal

(2) Relapse

Of the 1546 patients, 924 showed a relapse of the disease (63%), 106 died without evidence of
relapse (7%), and 771 patients died after a relapse (79% of the patients who showed a relapse
of the cancer).

Baseline Covariates: age at tumor removal, menopausal status, tumor size, tumor grade,
number of positive lymph nodes, levels of estrogen and progesterone receptors in the initial
biopsy, hormonal therapy, chemotherapy.

Our goal: modeling and estimating the transitions

1-2 1—-3 2—-3
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[lIness-Death Cox and AFT models - methods and software

Table: Models, Estimation Procedures, and Software

Authors Model Estimation Software
Procedure
Xu et al. Semi-parametric None

(Biometrics, 2010)

Lee et al.
(JRSS-C, 2015)

Jiang and Haneuse
(SJS, 2017)

Lee et al. (2017)

Gorfine et al.
(JASA, 2021)

Katz and Gorfine
(Biometrics, 2023)

Cox, gamma frailty,
semiparametric

Cox, gamma frailty,
semiparametric

Transformation model,
known transformation
function,
non-parametric frailty
at the price of known
error distribution

AFT, additive normal
frailty, parametric and
semiparametric

Cox, marginalized
gamma frailty,
semiparametric

AFT, multiplicative
gamma frailty,
semiparametric

MLE
Bayesian

Semiparametric
efficient score

Bayesian

Pseudo-
likelihood
approach

Semi-parametric
MLE

R package SemicompRisks

None

R package SemicompRisks

GitHub - frailty-LTRC

GitHub - semicompAFT

, Israel)

Thessaloniki ~ 9/19


https://github.com/nirkeret/frailty-LTRC
https://github.com/LeaKats/semicompAFT

lliness-Death with Frailty and Cox-type Models

Frailty-based Cox-type approach of Xu et al. (2010):
w in an unobserved subject-specific random effect (frailty).
T, - age at diagnosis, T, - age at death

h5y(t|Z,w) = A@OA—l Pr(Ti[t,t+A)|Ta>t, To>t,Z w)
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lliness-Death with Frailty and Cox-type Models

Frailty-based Cox-type approach of Xu et al. (2010):

w in an unobserved subject-specific random effect (frailty).

T, - age at diagnosis, T, - age at death

h5y(t|Z,w) = A@OA—l Pr(Ti[t,t+A)|Ta>t, To>t,Z w)
= who(t) exp(,Z)

h$s(t|Z,w) = AIiLnOA’l P (Tre[t,t+A)|Ty>t, Ta>t,Z,w)
= whos(t) exp(B132Z)

hss(tlts, Z,w) = A@OA—l Pr(Toct,t+A)|Ti=t, Ta>t,Z,w)
= whoas(t) exp(B5Z)

Limitations: the marginal distribution wrt w does not take a simple form and
includes the parameter of the frailty distribution.

Other relevant works: Lee et al. (2015); Jiang and Haneuse (2017).
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IlIness-Death with Frailty and Cox-type Models - A Marginalized Approach

Instead of the approach (Xu et al., 2010):

ho(tZ,w) = why,(t) exp(BHZ)
his(t|Z,w) = whiys(t) exp(B5Z)
hss(tlt, Z,w) = whys(t) exp(BrZ)

w in an unobserved subject-specific random effect.
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IlIness-Death with Frailty and Cox-type Models - A Marginalized Approach

Gorfine et al. (2021) assume conditional hazards

hip(t[Z,w) = wan(t|Z)
PEA(tZow) = wans(t]2)
h§3(t|t1, Z, W) = WOé23(1."t1, Z)

w in an unobserved subject-specific random effect,
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IlIness-Death with Frailty and Cox-type Models - A Marginalized Approach

Gorfine et al. (2021) assume conditional hazards

hip(t[Z,w) = wan(t|Z)
PEA(tZow) = wans(t]2)
h§3(t|t1, Z, W) = WOé23(1."t1, Z)

w in an unobserved subject-specific random effect, and marginal hazards (with
respect to w) of the form

h12(t|Z) - h012(t) eXp(BlEZ)
h3(t|Z) = hos(t) exp(B5Z)
h23(1.'|t1, Z) = h023(t) eXP(ﬁzgz)

The functions a, jk € {12,13,23}, are determined by the distribution of w and
the marginalized hazards.

The goal: estimating Sj and ho1o(+), jk € {12,13,23}.
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lliness-Death with Frailty and AFT Models

An additive frailty-based AFT approach of Lee et al. (2017):

logTi = BhZ+w+en ,T1>0
log T, = 51T32 + w + €13 , To > Ogiven being free of disease
log T, = 62T32 4+ w + €3 , To >t > 0given diagnosed at t;

Limitations: the conditional hazard does not admit a simple interpretation in
terms of the unobserved frailty w, and could be be a non-monotone function of w.
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Iliness-Death with Frailty and AFT Models - an Alternative Approach

A marginalized frailty-based AFT approach
of Kats and Gorfine (2023):

logTy = BLZ+ U ,T1>0
log T, = BIEZ + Uiz , T2 > Ogiven being free of disease
log T, = ,BZT:,;Z + U3z , To > t1 > Ogiven diagnosed at t;

Ui, Uiz, U3 are random errors with unspecified distributions.
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Ui, Uiz, Uz are random errors with unspecified distributions. The dependence between T;
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Iliness-Death with Frailty and AFT Models - an Alternative Approach

A marginalized frailty-based AFT approach
of Kats and Gorfine (2023):

BhZ+ U ,T1 >0
log T, = BIEZ + Uiz , T2 > Ogiven being free of disease
log T BaZ 4 Uxs , T > t1 > Ogiven diagnosed at t;

log Ty

Ui, Uiz, Uz are random errors with unspecified distributions. The dependence between T;

and T3 is incorporated via the following conditional baseline hazard functions of exp(Uj),
Jjk €12,13,23:

/\12(t|W) = W)\lz(t) ,t>0
A3(tlw) = whis(t) ,t > Ogiven being free of disease
A2z (s|t1, w) wA23(s) ,s > t; > Ogiven diagnosed at t;

Ajk(-) are unspecified, and w in an unobserved subject-specific random effect.

The hazards of this multiplicative model demonstrate monotonic increase as a function of w
across all error distributions. Consequently, this model offers a simpler interpretation regarding
the influence of unobserved frailty effects.
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Rotterdam Tumor bamk Data

1546 breast cancer patients who had node-positive disease and underwent a tumor removal

surgery.
(1) Tumor Removal

(2) Relapse

Of the 1546 patients, 924 showed a relapse of the disease (63%), 106 died without evidence of
relapse (7%), and 771 patients died after a relapse (79% of the patients who showed a relapse
of the cancer).

Baseline Covariates: age at tumor removal, menopausal status, tumor size, tumor grade,
number of positive lymph nodes, levels of estrogen and progesterone receptors in the initial
biopsy, hormonal therapy, chemotherapy.

Our goal: modeling and estimating the transitions

1-2 1—-3 2—3
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o
Transition: surgery — relapse

Age at surgery (divided by 10)

log of lymph nodes

log of estrogen+1

log of progesterone+1
Postmenopausal (vs. premenopausal)
Tumor size (ref < 20 mm)

20—50 mm

> 50 mm

Hormone therapy

Chemotherapy

Tumor grade 3 (vs. 2)

Transition: surgery — death

Age at surgery (divided by 10)

log of lymph nodes

log of estrogen+1

log of progesterone+1
Postmenopausal (vs. premenopausal)
Tumor size (ref. < 20 mm)

20-50 mm

> 50 mm

Hormone therapy

Chemotherapy

Tumor grade 3 (vs. 2)
Transition: relapse — death

Age at surgery (divided by 10)
log of lymph nodes

log of estrogen+1

log of progesterone+1
Postmenopausal (vs. premenopausal)
Tumor size (ref. < 20 mm)
20-50 mm

> 50 mm

Hormone therapy
Chemotherapy

Tumor grade 3 (vs. 2)

Malka Go

AFT-multiplicative

Est (SE)
2.18(0.73)

0.14 (0.06)
—0.40 (0.05)
0.07 (0.03)
0.09 (0.02)
—0.34(0.15)

—0.32(0.09)
—0.49 (0.11)
0.60 (0.13)
0.49 (0.11)
—0.25(0.09)

—0.43 (0.14)
—0.14 (0.08)
0.04 (0.04)
0.01 (0.04)
—0.15 (0.34)

—0.13(0.15)
—0.19(0.18)
0.41(0.18)
1.13(0.30)
—0.06 (0.13)

0.00 (0.07)
—0.25(0.07)
0.04 (0.05)
0.13 (0.04)
—0.21(0.17)

—0.37(0.14)
—0.52(0.17)
0.39 (0.14)
0.23 (0.18)
—0.26 (0.13)

Israel)

€xp

115

0.67
1.07
1.09
0.71

0.73
0.61
1.83
1.64
0.78

0.65
0.87
1.04
1.01
0.86

0.88
0.82
1.51

3.09
0.94

1.00
0.78
1.04
114
0.81

0.69
0.60
1.48
1.25
0.77

p-value
0.003

0.012
0.000
0.030
0.000
0.023

0.001
0.000
0.000
0.000
0.004

0.002
0.091
0.287
0.827
0.647

0.376
0.275
0.019
0.000
0.641

0.956
0.000
0.341
0.001
0.203

0.008
0.002
0.005
0.205
0.047

Holm
0.058

0.185
0.000
0.390
0.005
0.328

0.015
0.000
0.000
0.000
0.081

0.051
1.000
1.000
1.000
1.000

1.000
1.000
0.290
0.005
1.000

1.000
0.010
1.000
0.021
1.000

0.131
0.044
0.090
1.000
0.569

Cox-marginalized

Est (SE)
2.52(0.54)

—0.15 (0.06)
0.42(0.04)
—0.03 (0.02)
—0.04 (0.02)
0.13(0.13)

0.20 (0.07)
0.38 (0.11)
—0.38 (0.08)
—0.37(0.11)
0.21 (0.08)

1.32(0.37)
0.13(0.12)
—0.01(0.06)
0.08 (0.06)
—0.30 (0.50)

~0.16 (0.25)
0.15 (0.31)

—0.21(0.25)
—0.22(0.81)
—0.01(0.28)

0.03 (0.08)
0.25(0.05)
—0.03 (0.02)
—0.08 (0.02)
—0.05(0.13)

0.23 (0.07)
0.40 (0.10)
—0.18 (0.09)
—0.16 (0.13)
0.21(0.09)

exp

0.86
1.53
0.97
0.96
114

1.22
1.46
0.68
0.69
1.23

3.74
114
0.99
1.08
0.74

0.85
116

0.81
0.81
0.99

1.03
1.28
0.97
0.92
0.95

1.26
1.49
0.84
0.85
1.23

p-value
0.000

0.014
0.000
0.186
0.065
0.296

0.006
0.001
0.000
0.001
0.008

0.000
0.298
0.816
0.205
0.554

0.526
0.634
0.389
0.789
0.961

0.700
0.000
0.193
0.000
0.731

0.001
0.000
0.037
0.227
0.024

Holm
0.000

0.262
0.000
1.000
1.000
1.000

0.116
0.020
0.000
0.023
0.155

0.009
1.000
1.000
1.000
1.000

1.000
1.000
1.000
1.000
1.000

1.000
0.000
1.000
0.003
1.000

0.024
0.002
0.633
1.000
0.440

Cox-conditional

PM (SE)
1.47(0.23)

—0.22(0.08)
0.71(0.07)
—0.10 (0.04)
—0.11(0.03)
0.34(0.19)

0.40 (0.12)
0.79 (0.16)
—0.88(0.15)
—0.79 (0.16)
0.4 (0.13)

1.43(0.18)
0.4 (0.15)
—0.11 (0.08)
0.01 (0.07)
—0.35(0.70)

—0.04(0.28)
0.58 (0.35)
—0.69 (0.29)
—0.78 (0.63)
0.21(0.27)

0.08 (0.07)
0.38(0.07)
—0.10 (0.04)
—0.19 (0.04)
0.04 (0.20)

0.46 (0.14)
0.67 (0.18)
—0.48 (0.16)
—0.18 (0.17)
0.43(0.14)

€xp

0.80
2.03
0.90
0.90
1.40

1.49
2.19
0.41
0.46
1.56

4.20
1.54
0.89
1.01
0.70

0.96
1.79
0.50
0.46
1.23

1.08
1.47
0.90
0.83
1.04

1.58
1.96
0.62
0.84
154

Credible interval
(1.046,1.956)

(0.685,0.918)
(1.795,2.326)
(0.839,0.964)
(0.845,0.958)
(0.980,2.081)

(1.180,1.882)
(1.625,3.007)
(0.310,0.541)
(0.329,0.615)
(1.216,1.986)

(2.987,5.923)
(1.163,2.092)
(0.765,1.040)
(0.884,1.163)
(0.179,2.997)

(0.554,1.653)
(0.933,3.488)
(0.275,0.851)
(0.130,1.531)
(0.750,2.148)

(0.931,1.232)
(1.271,1.687)

(0.838,0.973)
(0.771,0.884)
(0.705,1.527)

(1.234.2.112)
(1.405,2.764)
(0.452,0.835)
(0.604,1.179)
(1.177,2.034)

:Lee et al. (2017)
resulted in convergence failure (due
to the use of sojourn time which is
negatively correlated with time
from surgery to relapse).

: Katz & Gorfine
(2023)

: Gorfine et al.
(2021)

:Leeetal. (2015)

- Strong dependence between
within-subject failure times.

- The directions of the covariates’
effect under these models are
similar, but inference results are
somewhat different.
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Multistate Models with Frailty Approach

@ Existing frailty-based methods can be extended to other types of
multi-state models, but in some cases it could be challenging.

@ A relatively simple setting - multiple non-terminal events and a vector
of random effects (frailties) capturing multiple levels of dependence
among the event.

@ More “complex” multistate settings with frailties - could be changing.

@ Additional work is required to extend existing estimation methods to
the case of time dependent covariates with frailties.
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