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A joint project between TG2 and TG4

TG2
Selection of variables and functional forms in 

multivariable analysis

Aim: Derive guidance for variable and function selection  
in multivariable analysis.

Main focus: identify influential variables and gain 

insight into their individual and joint relationship with 
the outcome. Two of the (interrelated) main challenges 
are selection of variables for inclusion in a multivariable 
explanatory model, and choice of functional forms for 
continuous variables 

TG4
Measurement error and misclassification

Aim: Increase awareness of problems caused by 
measurement error and misclassification in statistical 
analyses and remove barriers to use statistical methods 
that deal with such problems.

Key messages: Only a minority of published papers
present estimates that are adjusted for measurement
error.

Considering measurement error is necessary because it
may have an impact on the study results.

Special statistical methods are used to account for
measurement error.

Additional information is required about the type and
size of the measurement error to adjust for
measurement error.

31/08/2023 STRATOS Symposium - ISCB2023 2



TG2: Key publications

1. Investigation and comparison of properties of variable selection strategies
2. Comparison of spline procedures in univariable & multivariable contexts
3. How to model one or more variables with a ‚spike-at-zero‘?
4. Comparison of multivariable procedures for model and function selection
5. Role of shrinkage to correct for bias introduced by data-dependent 

modelling
6. Evaluation of new approaches for post-selection inference
7. Adaptation of procedures for very large sample sizes needed?
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TG4: Key publications
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Measurement error in regression modelling 

We are interested in learning the regression relationship between an outcome variable 𝒀 and a covariate(s) 𝑿.

𝐸 𝑌 𝑋 = 𝛽0 + 𝛽𝑋𝑋

Measurement error can be seen in continuous covariates, categorical covariates (misclassification) or the  
outcome variable  𝒀. 

Focus here on the first case, of a continuous covariate, for which the true value of 𝑿 may be unobserved.  
Denote 𝑿∗ the error-prone observed variable.  

• Classical Measurement Error Model (CME)

𝑿∗ = 𝑿 + 𝑼, where 𝑼 is random variable with mean 0,  independent of 𝑿 and 𝒀. 

• Non-differential error stipulates that error distribution remain consistent across different levels of the 
outcome variable.  
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Effects of measurement error in studies
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• Assume a simple linear regression, given as: 𝐸 𝑌 𝑋 = 𝛽0 + 𝛽𝑋𝑋

• Because of measurement error we explore:  𝐸 𝑌 𝑋∗ = 𝛽0
∗ + 𝛽𝑋

∗𝑋∗

• Under non-differential and CME (𝑿∗ = 𝑿 + 𝑼)  then 𝛽𝑋
∗ ≤ 𝛽𝑋 with 

equality only when 𝛽𝑋=0

• The measurement error attenuates the estimated coefficient 𝛽𝑋
∗ = 𝜆𝛽𝑋,

where 𝜆 =
𝑣𝑎𝑟(𝑋)

𝑣𝑎𝑟 𝑋 +𝑣𝑎𝑟 𝑈
, the attenuation factor [ 0 < 𝜆 ≤ 1 ]

• Larger var(U) → smaller 𝜆→ greater attenuation

• Measurement error also makes the estimate less precise relative to its expected 

value
𝐸( ෢𝛽𝑋

∗ )

𝑠𝑒( ෢𝛽𝑋
∗ )
<

𝐸( ෢𝛽𝑋)

𝑠𝑒(෢𝑋)

• Effective sample size is reduced by 𝜌𝑋𝑋∗
2 , the squared correlation coefficient 

between 𝑿 and 𝑿∗

• While measurement error in this setting results in bias and loss of power, null 
hypothesis 𝛽𝑋

∗ = 0, is still a valid test for 𝛽𝑋

# Simulate data

n <- 500

X_true <- rnorm(n)

# Non-linear relationship for Y without measurement error

Y <- 0 + 1*X_true+ rnorm(n)

# Introduce measurement error to X

X_observed <- X_true + rnorm(n, sd=0.5)

# Simple linear regression using X with measurement error

lin_reg <- lm(Y ~ X_observed)

lin_reg_true <- lm(Y~X_true)

# Plot Y against X_observed

plot(Y ~ X_observed, main = "Scatterplot with Linear Fit ", 

xlab = "X_observed", ylab = "Y", col = "blue")

legend("bottomright", legend = c("Data", "On X", "On observed X*"),

col = c("blue", 1, 2), lty = c(NA, 1, 1), pch = c(1, NA, NA))

# Add the regression line to the plot

abline(lin_reg, col = "red")

abline(lin_reg_true)



The impact of measurement error on functional form 
estimation 

• Often we encounter cases where 𝑋 is not linearly related with 𝑌: E(𝑌|𝑋) = 𝑓 𝑋
• Examples in dose-response studies, environmental exposures…

• Challenges

• Function 𝑓() is unknown, requiring flexible estimation methods

• We observe 𝑋∗which is measured with error

• Consequences not fully understood
• The observed 𝑋∗ can introduce bias in the estimated 𝑓() and mislead inference

• Objectives
• Evaluate the impact of measurement error in a continuous predictor 𝑋, on its estimated, potential non-linear

dose response relationship 𝑓 𝑋 with an outcome 𝑌.

• Compare different methods of estimating the true relationship between the  outcome variable 𝑌 and the 
covariate 𝑋.  

• Validate “correction” strategies to reduce the impact of measurement error. 
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Framework of investigation

Data Generation 
& Evaluation

• Anne Thiebaut
(lead)

• Laurence 
Freedman

• Aris Perperoglou

Bayesian 
Methods

• Paul Gustafson 
(lead)

• Raymond Carroll

• Frank Harrell

• Nadja Klein

Imputation

• Victor Kipnis

• Douglas Midthune

SIMEX

• Michal 
Abrahamowicz
(lead)

• Steve Ferreira
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The simulation

• Data generated from logit(P(Y = 1|𝑋)) = 𝑓 𝑋 where 𝑋 distribution of 𝑋 and 𝑓 𝑋 is undisclosed

• K datasets, each: 

• Main study: N={15000, 5000) independent realizations of a Y binary outcome and a continuous 

covariate measured with error 𝑋∗

• Validation sub-study: n pairs of repeat observations of 𝑋∗. 

• A classical measurement error model linking error-prone 𝑋∗ to 𝑋, with error term having undisclosed 

variance and distributional form. 

• Each dataset will be checked for outliers, and the outliers removed. The undisclosed aspects of these 

datasets will be varied across the K datasets.
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Workflow

Data generation team

Simulates and distributes data

• Defines flexible functions to be investigated:

• Cubic b-splines with 1 interior knot at median 
of observed X*.

• P-splines with 10 interior knots. Penalty 
optimised within groups.

• Fractional Polynomials of second degree. 
Powers selected within groups. 

Methods Teams

Applies methods 

• SIMEX

• Imputation

• Bayesian
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Data generation team

Evaluates methods

• Mean squared error

• Weighted mean square error



Simulation-Extrapolation (SIMEX)
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A 2-step method, Cook and Stefanski (1994), adapted to various measurement error problems Carroll (2006)

General idea

Sequentially simulate new variables with increasing measurement error. Use generated variables to estimate parameter of 
interest; each estimate being increasingly biased. This establishes a relationship between amount of bias and amount of 
measurement error. Finally, extrapolate this relationship to the case of no error.

For this project, we propose two alternative SIMEX approaches:

1) Apply SIMEX directly on estimated curves

→ Let መ𝑓 𝑥0 be an estimate of the NL relationship for selected X = x0. መ𝑓 𝑥0 will be estimated for increasing amounts of 
measurement error and then extrapolated to the case of no error, yielding the SIMEX corrected estimate of መ𝑓 𝑥0 .

2) Apply SIMEX on the spline or FP coefficients

→ For increasing amounts of measurement error, estimate the spline of FP coefficients and extrapolate each coefficient to 
the case of no error.

→ The SIMEX-corrected estimate of መ𝑓 𝑥0 will then be obtained using the extrapolated coefficients.



Imputation methods

• Regression calibration estimates the conditional expectation of the function 𝑓 𝑋 given the error prone 

covariate X* and substitutes it for the true covariate in the logistic regression.

• Assuming that there is a Box-Cox transformation g so that the model for g(X*) on the transformed 

scale in the calibration substudy is specified as a linear mixed model with random intercept, the 

conditional expectation of 𝑓 𝑋 on the original scale can be estimated by using the NCI method (see 

NCI BRG website)

• Multiple imputation: The imputed 𝑓 𝑋 consists of its conditional expectation given X* and Y plus the 

imputed value of the regression residual. Imputation is done several (usually 10) times using different 

model parameter values from the corresponding estimated distributions

• The method defers since the model for g(X*) in the calibration substudy should include a covariate 

being the output dichotomous variable Y in that substudy. 
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Bayesian Methods

We specify:

• an outcome model (for Y given X)

• an exposure model for X

• a measurement model for X* given X

• prior distributions for parameters in each of the three sub-models

• This defines a joint posterior distribution of all parameters and latent X values, given all the observed data.

• Given a dataset, off-the-shelf MCMC software yields (a Monte Carlo approximation to) this posterior 
distribution. 

• Summaries of the posterior distribution used for inference, e.g., posterior means of parameters in the 
outcome model are point estimates.
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Methods of evaluation

• Unweighted mean squared error on the log odds scale: σ𝑖=𝑙𝑜𝑤
𝑖=ℎ𝑖𝑔ℎ

𝑓 𝑥𝑖 − መ𝑓 𝑥𝑖
2

/(high – low +1)

• Weighted mean squared error on the log odds scale: σ𝑖=𝑙𝑜𝑤
𝑖=ℎ𝑖𝑔ℎ

𝑤𝑖 𝑓 𝑥𝑖 − መ𝑓 𝑥𝑖
2

/(high – low +1), where the 

weight 𝑤𝑖 is the density of 𝑥𝑖 in the distribution of X.

Other evaluation functions that may be considered are: 

Absolute error on the log odds scale, mean squared error on the risk scale and absolute error on the risk scale

Let 𝑓 𝑥1 , 𝑓 𝑥2 , … , 𝑓 𝑥𝑚 the true values of the function and መ𝑓 𝑥1 , መ𝑓 𝑥2 , … , መ𝑓 𝑥𝑚 the estimated values

For each dataset choose undisclosed evaluation “limit points” xlow and xhigh that define range over which 
evaluation will be conducted compute: 
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The process

Stage 0: Preparation

• Data team (DT) defines
simulation method,
variations and
combinations of
parameters.

• Methods teams (MT)
define their method of
analysis.

Stage 1: First few 
datasets

•Five example datasets will
be circulated to MTs, each
with a different f(x).

•Teams pilot their methods
and create scripts (R and/or
SAS).

•Results back to data team
along with first scripts for
running code.

Stage 2: More data

•DT produce combinations
on:

• main sample size

• replication sub-study
sample size

• measurement error
variance

• distributional form of X

• Datasets fed back to MTs.

• MTs fine-tune their code
and ensure it can be applied
by the data team.

Stage 3: Methods 
applied by data team

• DT produces further
replicates of each scenario
variant (approx 20 – leading
to 800 to 1600 datasets).

•DT uses  computer code
provided by the three
teams to run methods and
evaluate results.

•At each stage the results will
be compared.

• Methods that appear
clearly inferior, may be
dropped from further
simulations.

Stage 4: Optional

•If there are competing
methods that appear
optimal but
indistinguishable for a
scenario variant, then
further simulations up to
500 will be run on them, to
discover whether one is
optimal.
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Overall Aim

This project is the 1st step in the TG2-TG4 collaboration.

Specific goal :

To use simulations to assess the impact of measurement error (ME) in a 
continuous ‘covariate’ X on B-spline and fractional polynomial (FP)
estimates of its possibly non-linear (NL), relationship f(X) with the 
outcome in univariate logistic regression.



Data generation

➢Classical ‘random’ ME model:
➢Observed = Truth + error (Xi* = Xi + ei)

2 distributions of X:
➢X ~ Unif(80,150)
➢X resampled from real-world values of SBP at baseline from the Framingham

Heart Study

4 strengths of ME:
➢ ei ~ N(0,σe)

➢ σe / σX = ¼, ½, ¾, 1

➢ Logistic regression with a Binary outcome : logit[P(Y=1|X)] = f(X)
➢ Different shapes of true f(X)

➢ Created using complex functions of X (e.g., asymmetrical sigmoidal or 5-degree polynomials)

➢ Sample sizes of N = 250, 500, 1000, 2000 (with ~30% cases: Y=1)



Analysis methods

We compared estimated NL curves for (i) f(X) for true X, vs (ii) f(X*) for
error-prone X* using 2 flexible estimation methods:

➢ Unpenalized cubic regression B-splines with 1 interior knot (4 df)

placed at the median of X*

➢ Fractional polynomials of degree 2 (FP2, 4 df), using the MFP

algorithm to select the two powers (FP2 was “forced” regardless of test

results)



SELECTED RESULTS
Uniform Distribution of x



5 scenarios for true f(X): small local biases

(Black = True f(X), Grey = Individual estimates, White = Mean estimate)
*N = 1000, X~Unif(80,150), σe / σX = ½



Attenuation increases with increasing ME in X* (L -> R)
(Uniform X, N= 1,000)

σe / σX = ¼, ½, ¾, 1, respectively
*N = 1000, X~Unif(80,150)



Non-uniform (+ skewed) X, based on SBP data: Spurious Non-linearity in 
upper half of f(X*) 

σe / σX = ¼, ½, ¾, 1, respectively
*N = 1000, X = SBP



Flattening increases with increasing ME in X* (L -> R)(Uniform X, 
N= 1,000)

σe / σX = ¼, ½, ¾, 1, respectively
*N = 1000, X~Unif(80,150)



Flattening increases with increasing ME in X* (L -> R)
(+ skewed X distrib., based on SBP data, N= 1,000)

σe / σX = ¼, ½, ¾, 1, respectively
*N = 1000, X~SBP



“Linearization” increases with increasing ME in X* (L -> R)
Uniform X, N= 1,000

σe / σX = ¼, ½, ¾, 1, respectively
*N = 1000, X~Unif(80,150)



“Linearization” increases with increasing ME in X* (L -> R)
Uniform X, N= 1,000

σe / σX = ¼, ½, ¾, 1, respectively
*N = 1000, X~Unif(80,150)



Increasing N (L->R) affects only variance but 
Bias in f(X*) remains

N = 250, 500, 1000, 2000, respectively
*X~Unif(80,150), σe / σX = ½



Preliminary Conclusions

➢Random Measurement Errors (ME) in X may affect flexible estimates of Non-
Linear (NL) associations in a complex way

➢ Generally, ME induces both «Linearization» &  «Flattening (attenuating)» of the
NL estimates

➢ however, Locally, the ME-prône estimate may over-estimate the local slope and
induce spurious NL

➢Results may dépend on the True Distribution of X

➢Cubic B-splines vs Fractional Polynomials (FP2) produce very similar estimates

➢Splines & FP2 (both with 4 df) somewhat biased even for True X if f(X) complex
…

➢With low N (250, about 80 events/cases) FP2 estimates more stable than splines



GRAZIE THANK YOU
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