How to include time-varying exposures prone to measurement error in survival analyses?

TG4 subgroup:

Cécile Proust-Lima, Viviane Philipps, Veronika Deffner, Hendrieke Boshuizen, Laurence Freedman, Anne Thiébaut

> INSERM U1219, Bordeaux Population Health Research Center, Bordeaux, France Univ. Bordeaux, ISPED, Bordeaux, France cecile.proust-lima@inserm.fr

> > ISCB - STRATOS Mini-Symposium - August 31, 2023

Cécile Proust-Lima (INSERM, France)

Error-prone time-varying exposures in survival analyses ISCB - STRATOS Mini-Symposium - August 31, 2023 1/20

Context

► ...

- Association between a time-varying exposure and a time to event:
 - BMI and incidence of breast cancer
 - Physical activity and incidence of Parkinson disease
 - Blood Pressure and cardiovascular event

• Exposure data are measures of an underlying continuous-time process:

- measured with error
- measured at sparse and irregular times
- stopped by the event occurrence

Central statistical issue

• Cox model with time-varying covariate dedicated to

- continuously observed time-varying covariate (value known at each observed survival time (event/censored))
- observed without error
- covariate (and observation process) not impacted by the event occurrence:"external" exposure

Central statistical issue

• Cox model with time-varying covariate dedicated to

- continuously observed time-varying covariate (value known at each observed survival time (event/censored))
- observed without error
- covariate (and observation process) not impacted by the event occurrence:"external" exposure

X sparse

X error-prone

X internal/ truncation

K A E K A E K

✗ these assumptions rarely apply in health studies (Prentice 1982; Andersen 2002)

Error-prone time-varying exposures in survival analyses ISCB - STRATOS Mini-Symposium - August 31, 2023 3/20

Statistical model envisaged

• Within the Cox modeling framework, the target model for time to event *T_i* is:

$$\lambda_i(t) = \lambda_0(t) \exp(X_i(t)\gamma) \qquad t > 0$$

• $X_i(t)$ is the "true" exposure process

- Available data: exposure measurements \tilde{X}_{ij} at sparse times t_{ij}
 - with generally truncation at the event time: $\max(t_{ij}) < T_i$
 - with random measurement error:

$$\tilde{X}_{ij} = X_i(t_{ij}) + \varepsilon_{ij}$$
 with $\varepsilon_{ij} \sim \mathcal{D}_{iid}$

How to leverage sparse and error-prone observations of $X_i(t)$ to correctly estimate γ ?

Solutions identified in the literature

- Towards satisfying Cox model properties?
 - sparse: extrapolation/interpolation of values at all time points:
 - ★ Last Value Carried Forward (LOCF)
 - ★ predictions from a regression model
 - error-prone: regression model to separate observations from the underlying process
 - internal / truncation: account for the truncation induced by the event

しょうしょうし

Solutions identified in the literature

- Towards satisfying Cox model properties?
 - sparse: extrapolation/interpolation of values at all time points:
 - ★ Last Value Carried Forward (LOCF)
 - ★ predictions from a regression model
 - error-prone: regression model to separate observations from the underlying process
 - internal / truncation: account for the truncation induced by the event

• Methods identified in the literature

	LOCF	Regression	Multiple	Joint
Reference		Ye	Moreno-Betancur	Wulfsohn
		Biometrics 2008	Biostat 2018	Biometrics 1997
sparse	\checkmark	\checkmark	\checkmark	\checkmark
error-prone	×	\checkmark	\checkmark	\checkmark
internal / truncation	×	×	\checkmark	\checkmark

K 4 3 K 4 3 K

- Samples of 500 subjects ; 500 replications
- Generation process "true" model for subject i
 - ► True exposure process: $X_i(t) = F(t)(\beta + u_i) \quad \forall t \in \mathbb{R}^+ \text{ with } u_i \sim \mathcal{N}(0, B)$

- Samples of 500 subjects ; 500 replications
- Generation process "true" model for subject i
 - ► True exposure process: $X_i(t) = \mathbf{F}(t)(\boldsymbol{\beta} + \boldsymbol{u}_i) \quad \forall t \in \mathbb{R}^+ \text{ with } \boldsymbol{u}_i \sim \mathcal{N}(0, \boldsymbol{B})$
 - Visit process j every y years (y=1,2) until administrative censoring at 10 years:

 $t_{ij} = j + \tau_{ij}$ with $\tau_{ij} \sim \mathcal{U}(-1, 1)$

10 1 2 1 1 1

- Samples of 500 subjects ; 500 replications
- Generation process "true" model for subject i
 - ► True exposure process: $X_i(t) = \mathbf{F}(t)(\boldsymbol{\beta} + \boldsymbol{u}_i) \quad \forall t \in \mathbb{R}^+ \text{ with } \boldsymbol{u}_i \sim \mathcal{N}(0, \boldsymbol{B})$
 - Visit process j every y years (y=1,2) until administrative censoring at 10 years:

$$t_{ij} = j + \tau_{ij}$$
 with $\tau_{ij} \sim \mathscr{U}(-1, 1)$

Repeated exposure observations at visit times:

$$\tilde{X}_{ij} = X(t_{ij}) + \varepsilon_{ij}$$
 with $\varepsilon_{ij} \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$

- Samples of 500 subjects ; 500 replications
- Generation process "true" model for subject i
 - ► True exposure process: $X_i(t) = \mathbf{F}(t)(\boldsymbol{\beta} + \boldsymbol{u}_i) \quad \forall t \in \mathbb{R}^+ \text{ with } \boldsymbol{u}_i \sim \mathcal{N}(0, \boldsymbol{B})$
 - Visit process j every y years (y=1,2) until administrative censoring at 10 years:

$$t_{ij} = j + \tau_{ij}$$
 with $\tau_{ij} \sim \mathscr{U}(-1, 1)$

Repeated exposure observations at visit times:

$$\tilde{X}_{ij} = X(t_{ij}) + \varepsilon_{ij}$$
 with $\varepsilon_{ij} \sim \mathcal{N}(0, \sigma_{\varepsilon}^2)$

Survival outcome (T_i, δ_i) with hazard

 $\lambda_i(t) = \lambda_0(t) \exp(X_i(t)\gamma)$ with a Weibull $\lambda_0(t)$

- Samples of 500 subjects ; 500 replications
- Generation process "true" model for subject i
 - ► True exposure process: $X_i(t) = \mathbf{F}(t)(\boldsymbol{\beta} + \boldsymbol{u}_i) \quad \forall t \in \mathbb{R}^+ \text{ with } \boldsymbol{u}_i \sim \mathcal{N}(0, \boldsymbol{B})$
 - Visit process j every y years (y=1,2) until administrative censoring at 10 years:

$$t_{ij} = j + \tau_{ij}$$
 with $\tau_{ij} \sim \mathscr{U}(-1, 1)$

Repeated exposure observations at visit times:

$$\tilde{X}_{ij} = X(t_{ij}) + \varepsilon_{ij}$$
 with $\varepsilon_{ij} \sim \mathcal{N}(0, \sigma_{\varepsilon}^2)$

Survival outcome (T_i, δ_i) with hazard

 $\lambda_i(t) = \lambda_0(t) \exp(X_i(t)\gamma)$ with a Weibull $\lambda_0(t)$

+ Eventually, truncation of \tilde{X} at the event time (are indicated in red the parameters that changed according to the scenarios)

Simulations: Estimation models/techniques

• Naive LOCF (Last Observation Carried Forward) Cox model:

 $\lambda_i(t) = \lambda_0(t) \exp(\tilde{X}_i(t)\gamma)$

with $\tilde{X}_i(t) = \tilde{X}_i(t_{ij})$ with $j = \max(k; t_{ik} \le t)$

Simulations: Estimation models/techniques

• Naive LOCF (Last Observation Carried Forward) Cox model:

 $\lambda_i(t) = \lambda_0(t) \exp(\tilde{X}_i(t)\gamma)$

with $\tilde{X}_i(t) = \tilde{X}_i(t_{ij})$ with $j = \max(k; t_{ik} \le t)$

• Regression Calibration:

 $\lambda_i(t) = \lambda_0(t) \exp(\hat{X}_i(t)\gamma)$

with $\hat{X}_i(t)$ predicted from Linear Mixed Model:

and
$$\hat{X}_{i}(t) = \mathbb{E}(X_{i}(t)|(X_{ij})_{j=1,...,n_{i}})$$

- For the simulations, two settings:
 - **★** classical RC: estimation of $\hat{\beta}$ and \hat{u}_i based on $\tilde{X}_{ij} < T_i$
 - **★** external RC: estimation of $\hat{\beta}$ and \hat{u}_i based on \tilde{X}_{ij} even after T_i

Simulations: Estimation models/techniques (cont'd)

• Multiple Imputation:

 $\lambda_i(t) = \lambda_0(t) \exp(\hat{X}_i^m(t)\gamma)$

with a modified Linear Mixed Model:
$$\tilde{X}_{ij} = \underbrace{\mathbf{F}(\mathbf{t})(\boldsymbol{\beta} + \boldsymbol{u}_i) + \boldsymbol{\beta}_D D_{ij} + \boldsymbol{\beta}_{\Lambda} \Lambda(T_i)}_{X_i(t_{ij})} + \varepsilon_{ij}$$

and $\hat{X}_{i}^{m}(t)$ draws (m = 1, ..., M) from the posterior distribution of $\mathbb{E}(X_{i}(t)|(X_{ij})_{j=1,...,n_{i}})$

オロト オポト オモト オモト

Simulations: Estimation models/techniques (cont'd)

• Multiple Imputation:

 $\lambda_i(t) = \lambda_0(t) \exp(\hat{X}_i^m(t)\gamma)$

with a modified Linear Mixed Model:
$$\tilde{X}_{ij} = \underbrace{\mathbf{F}(\mathbf{t})(\boldsymbol{\beta} + \boldsymbol{u}_i) + \boldsymbol{\beta}_D D_{ij} + \boldsymbol{\beta}_{\Lambda} \Lambda(T_i)}_{X_i(t_{ij})} + \varepsilon_{ij}$$

and $\hat{X}_{i}^{m}(t)$ draws (m = 1, ..., M) from the posterior distribution of $\mathbb{E}(X_{i}(t)|(X_{ij})_{j=1,...,n_{i}})$

• Joint model of both processes:

$$\lambda_i(t) = \lambda_0(t) \exp(X_i(t)\gamma)$$
 & $\tilde{X}_{ij} = \underbrace{\mathbf{F}(\mathbf{t})(\boldsymbol{\beta} + \boldsymbol{u}_i)}_{X_i(t_{ij})} + \varepsilon_{ij}$

Variance estimation in the two-stage approaches

▲ For RC and MI methods:

Parametric bootstrap with the Rubin's rule to account for first-stage variability

Variance estimation in the two-stage approaches

▲ For RC and MI methods:

Parametric bootstrap with the Rubin's rule to account for first-stage variability

- parameters in the LMM noted $\theta = (\beta, \text{vec}(B))$
- Internal, external regression calibration :
 - ► for b=1,...,500 draws: $\theta^b \sim \mathcal{N}(\hat{\theta}, \hat{V}(\hat{\theta}))$
 - BLUP $\hat{u_i}^b$ computed in θ^b
 - $\hat{X}^{b}(t)$ computed from θ^{b} and $\hat{u_{i}}^{b}$
 - Cox model estimated using $\hat{X}^{b}(t)$
 - Rubin's rule on $\hat{\gamma}^b$

- Multiple Imputation:
 - ► for b=1,..., 500 draws $\theta^b \sim \mathcal{N}(\hat{\theta}, \hat{V}(\hat{\theta}))$
 - draw of $\hat{u_i}^b \sim \mathcal{N}(\hat{u_i}(\theta^b), \hat{V}(\hat{u_i}(\theta^b)))$
 - $\hat{X}^{b}(t)$ computed from θ^{b} and $\hat{u_{i}}^{b}$
 - Cox model estimated using $\hat{X}^{b}(t)$
 - Rubin's rule on $\hat{\gamma}^b$
- in Moreno-Betancur (2018): draws for fixed effects only, not for variance parameters

イロト ノ目 トイモト イモト

э.

Linear, weak asso, small measurement error

Higher survival (132 events, 4.8 measures /subject)

ISCB - STRATOS Mini-Symposium - August 31, 2023 10/20

Linear, Strong asso, small measurement error

ISCB - STRATOS Mini-Symposium - August 31, 2023 11/20

Linear, weak asso, large measurement error

medium survival: 389 events, 3.5 measures /subject:

Higher Survival: 133 events, 4.9 measures/subject:

Lower Survival: 489 events, 2.1 measures /subject:

ISCB - STRATOS Mini-Symposium - August 31, 2023 12/20

Linear, Strong asso, larger measurement error

medium survival:: 407 events, 3.1 measures /subject:

Higher Survival: 277 events, 4.2 measures / subject:

Lower Survival: 487 events, 1.9 measures /subject:

ISCB - STRATOS Mini-Symposium - August 31, 2023 13/20

Illustration in dementia Research

- Association of time-dependent covariates with the instantaneous risk of dementia
 - Population-based 3C study with 17 years of follow-up, visits every 2-3 years, N=8193
 - Adjustment for city and gender
 - Trajectory over age approximated with natural cubic splines

Diagnosis of dementia

Log Hazard Ratios for Adiposity

Adopisity

BMI (in kg / m^2)

Method	log HR*	SE	р
LOCF	-0.0160	0.0077	0.0372
RC	-0.0138	0.0080	0.0830
MI	-0.0159	0.0081	0.0502
JM	-0.0142	0.0081	0.0774
	*		

* adjusted for gender, center

Cécile Proust-Lima (INSERM, France)

< 日 > < 同 > < 回 > < 回 >

Back to simulations: Constant trajectory, lower survival

Smaller association, small error (455 events, 2.6 meas/subj)

Larger association, small error (441 events, 2.6 meas/subj)

Smaller association, large error (455 events, 2.6 meas/subj)

Illustration in dementia Research

- Association of time-dependent covariates with the instantaneous risk of dementia
 - Population-based 3C study with 17 years of follow-up, visits every 2-3 years, N=8193
 - Adjustment for city, gender and education
 - Trajectory over age approximated with natural cubic splines

Diagnosis of dementia

Log Hazard Ratios for Adiposity and Verbal Fluency

Adopisity

BMI (in kg / m^2)

Method	log HR*	SE	р
LOCF	-0.0160	0.0077	0.0372
RC	-0.0138	0.0080	0.0830
MI	-0.0159	0.0081	0.0502
JM	-0.0142	0.0081	0.0774

* adjusted for gender, center

Verbal Fluency

IST sumscore in points (score from 0 to 40)

Method	log HR*	SE	р
LOCF	-0.125	0.005	<0.0001
RC	-0.222	0.007	<0.0001
MI	-0.199	0.009	<0.0001
JM	-0.255	0.008	<0.0001

* adjusted for gender, education, center

Conclusions

- Take home message:
 - LOCF strongly biased
 - Approximation with Two-stage methods valid if they account for early truncation by the event:
 - * using data available after the event if external (Regression Calibration)
 - * incorporating information on the event (Multiple Imputation)
 - JM works very well (expected as the generation model)

▲ Results obtained under correct specification!

- ▶ be careful with the functional form (nonlinear effect, lag, other features, ...)
- be careful with the modelled trajectory
- Technical remarks:
 - Variance estimation with RC and MI using Rubin's rule
 - Same results with 10% MCAR data, different measure frequencies, nonlinear trajectory
 - Same results expected with other functional forms in the survival model

Acknowledgements and references

Topic Group 4 "Measurement error and Classification"

Investigators of the 3C study

References:

Issue of time-varying covariates in Cox models:

Andersen PK, Liestøl K. Attenuation caused by infrequently updated covariates in survival analysis. Biostatistics. 1 oct 2003;4(4):633-49.

Prentice RL. Covariate measurement errors and parameter estimation in a failure time regression model. Biometrika. 1 août 1982;69(2):331-42.

Regression Calibration:

Ye W, Lin X, Taylor JMG. Semiparametric Modeling of Longitudinal Measurements and Time-to-Event Data-A Two-Stage Regression Calibration Approach. Biometrics. 2008;64(4):1238-46.

+ Albert PS, Shih JH. On Estimating the Relationship between Longitudinal Measurements and Time-to-Event Data Using a Simple Two-Stage Procedure. Biometrics. sept 2010;983-91.

Multiple Imputation:

Moreno-Betancur M, Carlin JB, Brilleman SL, Tanamas SK, Peeters A, Wolfe R. Survival analysis with time-dependent covariates subject to missing data or measurement error: Multiple Imputation for Joint Modeling (MIJM). Biostatistics. 1 oct 2018;19(4):479-96.

Joint Models:

Rizopoulos D. Joint Models for Longitudinal and Time-to-Event Data: With Applications in R. Chapman & Hall/CRC Biostatistics Series. 2012.

Error-prone time-varying exposures in survival analyses ISCB - STRATOS Mini-Symposium - August 31, 2023 20/20