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Context

Association between a time-varying exposure and a time to event:
Ï BMI and incidence of breast cancer
Ï Physical activity and incidence of Parkinson disease
Ï Blood Pressure and cardiovascular event
Ï ...

Exposure data are measures of an underlying continuous-time process:

Ï measured with error
Ï measured at sparse and irregular

times
Ï stopped by the event occurrence
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Central statistical issue

Cox model with time-varying covariate dedicated to

Ï continuously observed time-varying covariate

✗ sparse

(value known at each observed survival time (event/censored))

Ï observed without error

✗ error-prone

Ï covariate (and observation process) not impacted
by the event occurrence:"external" exposure

✗ internal/ truncation

✗ these assumptions rarely apply in health studies (Prentice 1982; Andersen 2002)
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Statistical model envisaged

Within the Cox modeling framework, the target model for time to event Ti is:

λi(t) =λ0(t)exp(Xi(t)γ) t > 0

Ï Xi(t) is the "true" exposure process

Available data: exposure measurements X̃ij at sparse times tij
Ï with generally truncation at the event time: max(tij) < Ti
Ï with random measurement error:

X̃ij =Xi(tij)+εij with ϵij ∼
iid

D

How to leverage sparse and error-prone observations of Xi(t)
to correctly estimate γ?
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Solutions identified in the literature

Towards satisfying Cox model properties?
Ï sparse: extrapolation/interpolation of values at all time points:

⋆ Last Value Carried Forward (LOCF)
⋆ predictions from a regression model

Ï error-prone: regression model to separate observations from the underlying process
Ï internal / truncation: account for the truncation induced by the event

Methods identified in the literature
LOCF Regression Multiple Joint

Reference Ye Moreno-Betancur Wulfsohn
Biometrics 2008 Biostat 2018 Biometrics 1997

sparse ✓ ✓ ✓ ✓
error-prone ✗ ✓ ✓ ✓
internal / truncation ✗ ✗ ✓ ✓
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Simulation study: Comparison of methods

Samples of 500 subjects ; 500 replications

Generation process "true" model for subject i

  

Y1

Xi(t)

Y1

tij

Ti,δiXij
~

Ï True exposure process: Xi(t) =F(t)(β+ui) ∀t ∈R+ with ui ∼N (0, B)

Ï Visit process j every y years (y=1,2) until administrative censoring at 10 years:

tij = j+τij with τij ∼U (−1,1)

Ï Repeated exposure observations at visit times:

X̃ij =X(tij)+εij with εij ∼N (0,σ2
ϵ )

Ï Survival outcome (Ti,δi) with hazard

λi(t) =λ0(t)exp(Xi(t)γ) with a Weibull λ0(t)

+ Eventually, truncation of X̃ at the event time
(are indicated in red the parameters that changed according to the scenarios)
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Simulations: Estimation models/techniques

Naive LOCF (Last Observation Carried Forward) Cox model:

λi(t) =λ0(t)exp(X̃i(t)γ)

with X̃i(t) = X̃i(tij) with j= max(k; tik ≤ t)

Regression Calibration:

λi(t) =λ0(t)exp(X̂i(t)γ)

with X̂i(t) predicted from Linear Mixed Model: X̃ij =F(t)(β+ui)︸ ︷︷ ︸
Xi(tij)

+εij

and X̂i(t) = E(Xi(t)|(Xij)j=1,...,ni )

Ï For the simulations, two settings:

⋆ classical RC: estimation of β̂ and ûi based on X̃ij < Ti

⋆ external RC: estimation of β̂ and ûi based on X̃ij even after Ti

t

X
(t

)

t1 t2 t3 t4

t

X
(t

)

t1 t2 t3 t4
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Simulations: Estimation models/techniques (cont’d)

Multiple Imputation:
λi(t) =λ0(t)exp(X̂m

i (t)γ)

with a modified Linear Mixed Model: X̃ij =F(t)(β+ui)+βDDij +βΛΛ(Ti)︸ ︷︷ ︸
Xi(tij)

+εij

and X̂m
i (t) draws (m= 1, ...,M) from the posterior distribution of E(Xi(t)|(Xij)j=1,...,ni )

Joint model of both processes:

λi(t) =λ0(t)exp(Xi(t)γ) & X̃ij =F(t)(β+ui)︸ ︷︷ ︸
Xi(tij)

+εij
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Variance estimation in the two-stage approaches

" For RC and MI methods:
Parametric bootstrap with the Rubin’s rule to account for first-stage variability

Ï parameters in the LMM noted θ = (β,vec(B))

Internal, external regression calibration :

Ï for b=1,...,500 draws: θb ∼N (θ̂, V̂(θ̂))

Ï BLUP ûi
b computed in θb

Ï X̂b(t) computed from θb and ûi
b

Ï Cox model estimated using X̂b(t)

Ï Rubin’s rule on γ̂b

Multiple Imputation:

Ï for b=1,..., 500 draws θb ∼N (θ̂, V̂(θ̂))

Ï draw of ûi
b ∼N (ûi(θ

b), V̂(ûi(θ
b)))

Ï X̂b(t) computed from θb and ûi
b

Ï Cox model estimated using X̂b(t)

Ï Rubin’s rule on γ̂b

" in Moreno-Betancur (2018): draws for fixed
effects only, not for variance parameters

Cécile Proust-Lima (INSERM, France) Error-prone time-varying exposures in survival analyses ISCB - STRATOS Mini-Symposium - August 31, 2023 9 / 20



Variance estimation in the two-stage approaches

" For RC and MI methods:
Parametric bootstrap with the Rubin’s rule to account for first-stage variability

Ï parameters in the LMM noted θ = (β,vec(B))

Internal, external regression calibration :

Ï for b=1,...,500 draws: θb ∼N (θ̂, V̂(θ̂))

Ï BLUP ûi
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Linear, weak asso, small measurement error

Medium Survival (417 events, 3.4 measures /subject)
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Linear, Strong asso, small measurement error

medium survival: ( 446 events, 2.9 measures /subject)
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Linear, weak asso, large measurement error

medium survival: 389 events, 3.5 measures /subject:
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Linear, Strong asso, larger measurement error

medium survival:: 407 events, 3.1 measures /subject:
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Illustration in dementia Research

Association of time-dependent covariates with the instantaneous risk of dementia
Ï Population-based 3C study with 17 years of follow-up, visits every 2-3 years, N=8193
Ï Adjustment for city and gender
Ï Trajectory over age approximated with natural cubic splines

Adiposity - Body Mass Index
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Log Hazard Ratios for Adiposity

Adopisity

BMI (in kg / m2)

Method log HR∗ SE p
LOCF -0.0160 0.0077 0.0372
RC -0.0138 0.0080 0.0830
MI -0.0159 0.0081 0.0502
JM -0.0142 0.0081 0.0774

∗ adjusted for gender, center
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Back to simulations:
Constant trajectory, lower survival

Smaller association, small error (455 events, 2.6 meas/subj)

Larger association, small error (441 events, 2.6 meas/subj)

Smaller association, large error (455 events, 2.6 meas/subj)
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Illustration in dementia Research

Association of time-dependent covariates with the instantaneous risk of dementia
Ï Population-based 3C study with 17 years of follow-up, visits every 2-3 years, N=8193
Ï Adjustment for city, gender and education
Ï Trajectory over age approximated with natural cubic splines

Verbal Fluency - Isaacs Set Test (IST) Score
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Log Hazard Ratios for Adiposity and Verbal Fluency

Adopisity

BMI (in kg / m2)

Method log HR∗ SE p
LOCF -0.0160 0.0077 0.0372
RC -0.0138 0.0080 0.0830
MI -0.0159 0.0081 0.0502
JM -0.0142 0.0081 0.0774

∗ adjusted for gender, center

Verbal Fluency

IST sumscore in points (score from 0 to 40)

Method log HR∗ SE p
LOCF -0.125 0.005 <0.0001
RC -0.222 0.007 <0.0001
MI -0.199 0.009 <0.0001
JM -0.255 0.008 <0.0001

∗ adjusted for gender, education, center
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Conclusions
Take home message:

Ï LOCF strongly biased
Ï Approximation with Two-stage methods valid if they account for early truncation by the event:

⋆ using data available after the event if external (Regression Calibration)
⋆ incorporating information on the event (Multiple Imputation)

Ï JM works very well (expected as the generation model)

" Results obtained under correct specification!
Ï be careful with the functional form (nonlinear effect, lag, other features, ...)
Ï be careful with the modelled trajectory

Technical remarks:
Ï Variance estimation with RC and MI using Rubin’s rule
Ï Same results with 10% MCAR data, different measure frequencies, nonlinear trajectory
Ï Same results expected with other functional forms in the survival model
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