Initial data analysis plans are part of research projects

Marianne Huebner (Michigan State University, USA), Carsten Oliver Schmidt (University Medicine Greifswald, Germany) Lara Lusa (University of Primorska, Slovenia)

Website: https://www.stratosida.org

What are the most important statistical ideas of the past 50 years?* And rew Gelman^{\dagger} and Aki Vehtari^{\ddagger}

3 June 2021

1.8. Exploratory data analysis

Following Tukey (1962), the proponents of exploratory data analysis have emphasized the limitations of asymptotic theory and the corresponding benefits of open-ended exploration and communication (Cleveland, 1985) along with a general view of data science as going beyond statistical theory (Chambers, 1993, Donoho, 2017). This fits into a view of statistical modeling that is focused more on discovery than on the testing of fixed hypotheses, and as such has been influential not just

Initial data analysis \neq Exploratory data analysis

- Share toolbox (e.g. data visualization)
- IDA orients itself around research aim and statistical analysis plan

Initial Data Analysis Steps

IDA plans are limited to generic statements in statistical analysis plans/manuscripts

"Means (SDs) or counts and percentages were computed for all continuous or categorical demographic variables."

JAMA, August 2023

"Baseline characteristics of the analytical sample were summarised across three lifestyle groups as a percentage for categorical variables and mean and standard deviation for continuous variables. Missing values are summarised in supplementary table 1."

BMJ, August 2023

clinicaltrials.gov - similar

BMC Medical Research Methodology

RESEARCH ARTICLE

Open Access

Hidden analyses: a review of reporting practice and recommendations for more transparent reporting of initial data analyses

(2020) 20:61

Marianne Huebner^{1,2*}, Werner Vach³, Saskia le Cessie⁴, Carsten Oliver Schmidt⁵, Lara Lusa^{6,7} and on behalf of the Topic Group "Initial Data Analysis" of the STRATOS Initiative (STRengthening Analytical Thinking for Observational Studies, http://www.stratos-initiative.org)

IDA statements were reported in the methods, results, discussion, and supplement of papers.

- 40% (of 25 papers) included a statement about data cleaning.
- 44% included statements on item missingness, 60% on unit missingness
- 44% mentioned some changes in the analysis plan

Evidence for the Selective Reporting of Analyses and Discrepancies in Clinical Trials: A Systematic Review of Cohort Studies of Clinical Trials

Kerry Dwan¹*, Douglas G. Altman², Mike Clarke³, Carrol Gamble¹, Julian P. T. Higgins^{4,5}, Jonathan A. C. Sterne⁴, Paula R. Williamson¹, Jamie J. Kirkham¹

Discrepancy between protocols and publications:

- statistical analyses
- handling of missing data
- handling of continuous data
- subgroup analyses

Reasons often not discussed

"post hoc decisions about which subgroups to analyze and report may be influenced by the findings of those or related analyses"

Analysis Plans

Statistical analysis plan (SAP) = "a document that [...] includes detailed procedures for executing the statistical analysis of the primary and secondary variables and other data" (ICH E9)

"The SAP is to be applied to a clean or validated data set for analysis" -

Guidance for SAP is available

Initial data analysis plan (IDAP) – Is this included in the SAP?

What is needed: Guidance for IDAP as part of the SAP

DEBATE

Open Access

DEBATE-statistical analysis plans for observational studies

Bart Hiemstra^{1*}, Frederik Keus², Jørn Wetterslev³, Christian Gluud³ and Iwan C. C. van der Horst⁴

IDAP in DEBATE? Partially, with generic statements

- 1. Missing data (reporting, assumptions, how to handle)
- 2. Baseline characteristics (methods to summarize)
- 3. Time points at which the outcomes are measured
- 4. Loss to follow-up (timing, reasons, presentation)

IDA Plan (data screening) for cross-sectional studies

0							
IDA screening domain: Missing values (predictor and outcome variables)							
Missing value:			Provide number and proportion of missing values for each predictor				
	Prevalence	M1	and for the outcome variable; distinguish by type of missingness, if				
		M2	applicable. Describe number of complete observations when considering outcome				
	Complete cases		and predictors for any candidate model described in P1.				
	Patterns	M3	Investigate patterns of missing values across all variables, either as				
			tables or appropriately visualized. Can be structured by structural				
-			variables.				
_	IDA screening domain: Univariate descriptions (predictors and outcome)						
Univariate	Categorical variables	U1	Summarize frequency and proportion for each category or with ordinal				
			plots. If it is considered to collapse rare categories, summarize				
			frequencies of collapsed categories.				
descriptions	Continuous variables	U2	Inspect distributions with high-resolution histogram, summary of main quantiles and extremes mean, first four moments, number of distinct				
			values. Describe the mode of the data and its frequency. Inspect				
			distributions of transformed variables, if applicable.				
IDA screening domain: Multivariate descriptions (structural variables and predictors)							
Multivariate descriptions	Association	V1	Visualize and summarize the association of each predictor with the				
			structural variables				
	Correlation	V2	Quantify association with pairwise correlation coefficients between all				
			key predictors in a matrix or heatmap				
	Interactions, if	V3	Evaluate bivariate distributions of the predictors specified in				
	applicable		interactions. Include appropriate graphical displays.				
	Multivariate analyses – Extensions						
	Stratification, if applicable	VE1	Compute summary statistics of predictors and describe variation				
			between strata				
			defined based on level of measurement, <u>e.g.</u> centers, providers,				
			locations or other variables described as stratification variables in the analysis strategy				
			Ine analysis strategy				

IDA screening domain: Missing Values						
	Unit missingness	M1	Describe unit non-response, loss-to-follow-up and intermittent miss-			
Missing values (at different nis		M2	ingness, if applicable. Break down by the reason for missingness. Provide number and proportion of missing values for each variable at each time point as appropriate for fixed or time-varying variables.			
time points)	Patterns	M3	Describe patterns of missing values across variables at each time point and across time points.			
$Unit\ missingness_{\mathrm{ness}}^{\mathrm{Predictors}\ \mathrm{of}\ \mathrm{missing-}\ \mathrm{M4}}$			Explore whether there are predictors of missingness by comparing complete vs incomplete cases or investigate predictors of time to			
Variable (item) missingness			dropout, as appropriate; the aim can be the understanding of the missing data mechanism or the identification of potential auxiliary			
Patterns			variables, i.e. variables not required for analysis but that can be			
Dradictors of missingnoss			used to recover some of the missing information.			
Predictors of missing sides. S _{Missing} Values						
	Dropout effect	ME1	Visualize mean profiles of a continuous outcome by time metric			
Dropout effect	Stratified description of missingness	ME2	stratified time to drop-out. Evaluate predictors of time to drop-out. Describe missingness stratifying the summaries by variables that might influence the frequency of missing values, if relevant (for example type of interview).			

Time metric of data collection process Time metric of analysis strategy

Participation profile

Time frame

	IDA screening domain: Participation profile					
 Number of time points 	Time frame	P1	Provide number of time points and intervals at which measurements			
			are taken, using the time metric that best reflects the time of			
			inclusion in the study (typically time from enrollment, or calendar			
			time in studies that involve long enrollment times). Highlight the			
Time metric			differences between the time of first measurements and follow-up			
			times.			
• Time metric of data col	Time metric	P2	Describe the time metric and corresponding time points specified			
			in the analysis strategy, if different from the time metric described			
• Time metric of analysis			in P1.			
i inte metre or anaryon	Participants	P3	Provide the number of participants who attended the assessment			
			by time metric(s).			
	Extensions: Participation Profile					
Participants	Other time metrics	PE1	Use different time metric(s) to describe the time frame of the study,			
			if applicable and appropriate, e.g. calendar time or measurement			
 Number of participants 			occasion.			

IDA screening domain: Participation profile

measurement occasion

IDA screening domain: Longitudinal aspects				
Profiles	L1	Summarize changes and variability of variables within subjects, e.g. profile plots (spaghetti-plots) for groups of individuals.		
Trends	L2	Describe numerically or graphically longitudinal (average) trends of the outcome variable.		
Correlation and variabil- ity	L3	Estimate the strength of the within-participant correlation of the outcome variable between time points and its variability across		
		time points.		
Trends of time-varying explanatory variables	L4	Describe numerically or graphically the longitudinal trends of the time-varying variables.		

Profiles

- Changes of variables within subjects
 Trends
- Longitudinal trends of the outcome variable
- Longitudinal trends of time-varying explanatory variables Correlations and variability Variability across time points

Profile plots

Time varying variables

In practice: Communication and workflow

- 1. Project title, investigators
 - Objectives
 - Hypotheses
 - Outcomes, inclusion, exclusion criteria
- 2. Initial data analysis (data screening)
 - Missingness
 - Univariate descriptions
 - Multivariate descriptions
- 3. Statistical Analyses

Meeting with collaborators: What are the objectives and hypotheses? Will the data support objectives? Discuss analysis plan.

Meeting with collaborators: Are data as expected? Any issues to consider in the analysis plan?

Meeting with collaborators: Explain/interpret/discuss results

Lessons learned

Propose an IDA plan and a statistical analysis plan for the study protocol

"The data analysis plan consists of two parts. The aim of initial data analysis (IDA) is to examine data properties to ensure transparency and integrity of preconditions to conduct appropriate statistical analyses to answer the research questions. [...]"

Clinicians and statisticians learn from each other when discussing IDA report:

- Understanding data content better; learning about expected or unexpected data properties
- Update metadata/database
- "Reality hits" for research aims; confirm suspicions from the protocol phase
- If applicable: time metric/time zero discussed multiple times in the process

What the PI knew (or not) and didn't tell the statistician

- 1. Data were collected in two periods with a gap of several months
- 2. New procedure was introduced and performed together with standard practice procedure for a while (outcome= duration)
- 3. Physical activity data were collected with GPS: indoors had limited use
- 4. Unexpected univariate distributions (multi-modal, spikes at zero)
- 5. IDA findings were more interesting to the investigators than the statistical model

IDA is the foundation for modeling: presentation, checking expectations, interpretation, model decisions.

References

- IDA framework: Huebner M, le Cessie S, Schmidt CO, Vach W. A contemporary conceptual framework for initial data analysis. Observational Studies 2018; 4: 171-192. <u>https://doi.org/10.1353/obs.2018.0014</u>
- Website with IDA report and R code (cross-sectional): https://stratosida.github.io/regression-regrets/
- TG3 website: https://www.stratosida.org