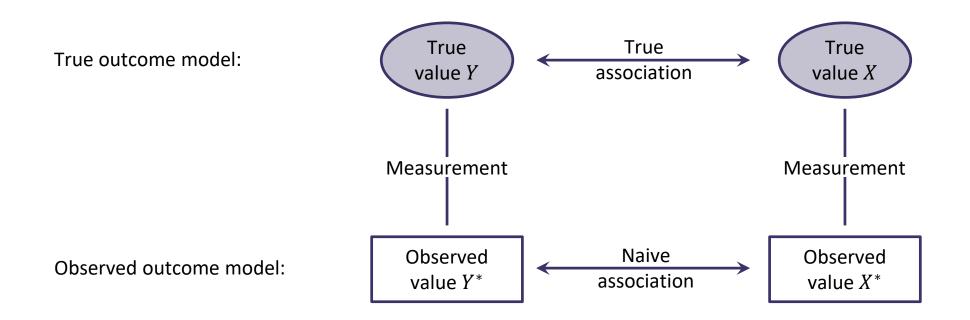


Bundesamt für Strahlenschutz



Teaching tool for exploring measurement error and misclassification in statistical analyses

Veronika Deffner

TG 4 on measurement error and misclassification of the STRATOS Initiative

Analyses with erroneous observations

STRATOS TG 4: Measurement error and misclassification

Aims

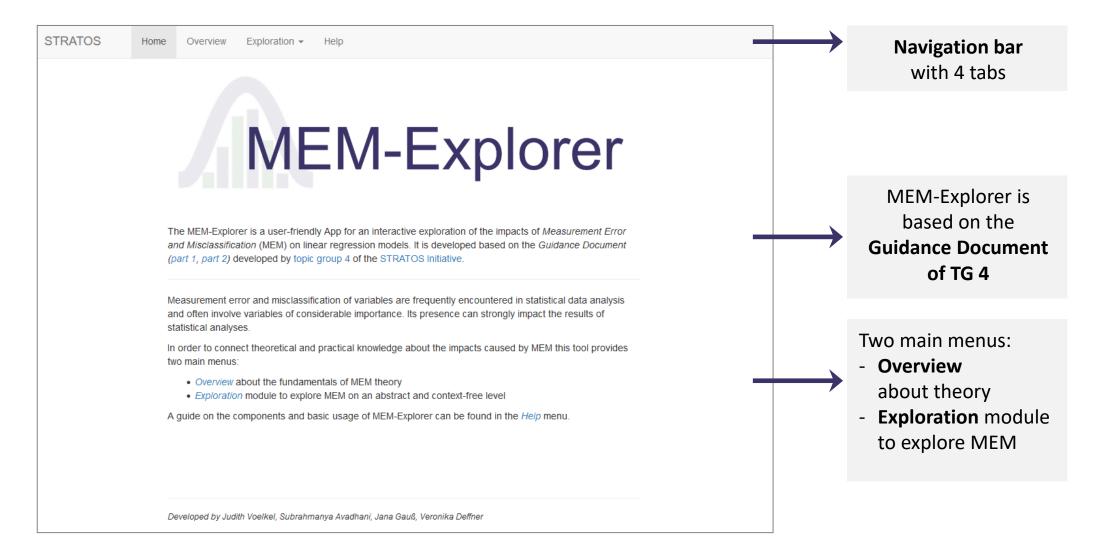
- 1 Increase the awareness of the problems
- caused by measurement error and misclassification in statistical analyses

Remove barriers to use statistical
methods that deal with such problems

Activities

- Article on the general relevance of the topic (Wallace 2020)
- Literature survey about current practice (Shaw et al. 2018)
- STRATOS guidance document:

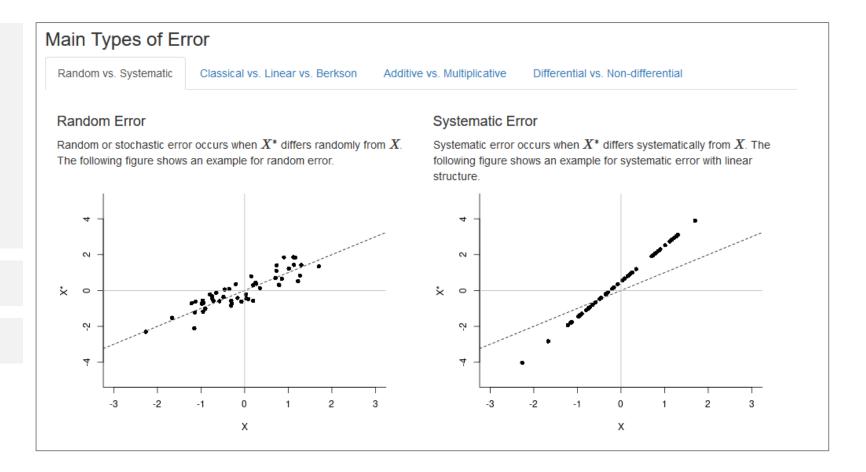
Part 1 – Basic theory and simple methods of adjustment (Keogh et al. 2020)


Part 2 – More complex methods of adjustment and advanced topics (Shaw et al. 2020)

- Presenting papers and workshops at conferences
- Website: http://www.stratostg4.statistik.uni-muenchen.de
- Interactive Shiny application "MEM-Explorer":

https://mem-explorer.shinyapps.io/MEMExplorer-v5/

Home



Main Types of Error

- Random vs. systematic
- Classical vs. linear vs. Berkson
 - Measurement error
 - Misclassification
- Additive vs. Multiplicative
- Differential vs. Non-differential

Impact on Regression

Error Adjustment

Main Types of Error

Impact on Regression

(a) Measurement error

- Classical vs. Linear vs. Berkson
- Impact on

Regression coefficient Test of null hypothesis Power

(b) Misclassification

• Classical vs. Berkson

Error Adjustment

mpact on Regres	sion				
(a) Measurement error					
(b) Misclassification					
Impacts of Measurem	ent Errors on Linear Regress	sion			
Assume the following:					
• $U \perp X^*$ in Berkson • Errors U are nondifferent	ole with mean 0 . I classiscal error models.				
	Classical measurement error model $X^* = X + U$	Linear measurement error model $X^* = a_0 + a_X X + U$	Berkson error model $X = X^* + U$		
	Single	covariate regression			
Regression coefficient	Underestimated $\lambda = \frac{\operatorname{var}(X)}{\operatorname{var}(X) + \operatorname{var}(U)}$	Biased in either direction $\lambda = \frac{\alpha_X \operatorname{var}(X)}{\alpha_X^2 \operatorname{var}(X) + \operatorname{var}(U)}$	Unbiased $\lambda = 1$		
Test of null hypothesis	Valid	Valid	Valid		
Power	Reduced \rightarrow effective sample size reduced by approximately $\rho_{XX^*}^2 = \lambda$	Reduced \rightarrow effective sample size reduced by approximately $\rho_{XX^*}^2$	Reduced \rightarrow effective sample size reduced by approximately $\rho^2_{XX^*}$		
	Regression with r	nultiple error prone covariates			

Main Types of Error

Impact on Regression

Error Adjustment

- SIMEX
 - (a) Measurement error
 - (b) Misclassification

Error Adjustment

SIMEX

The basic idea of SIMEX (Simulation extrapolation) is to add more error to the error prone covariate X^* , to see the impact this has on the parameter estimates, and then extrapolate back to the situation with no measurement error. This is equivalent to estimating the relationship between the measurement error variance var(U) and the parameter estimates and to extrapolate back to the situation in which the error variance is 0.

(a) Measurement error

(b) Misclassification

Assume a classical measurement error model, that is $X^* = X + U$ (U is a random variable with mean 0 and $U \perp X$).

The theoretical relationship between the biased regression slope β_X^* , based on the regression of Y on X^* , can be described as a function of var(U), $\beta_X^*(var(U))$. This function is estimated from simulated datasets obtained by adding further measurement error to X^* . To estimate β_X , the function $\beta_X^*(var(U))$ is extrapolated back to var(U) = 0 (as $\beta_X^*(0) = \beta_X$).

Let var(U) be known or assumed, e.g. through comparison measurements.

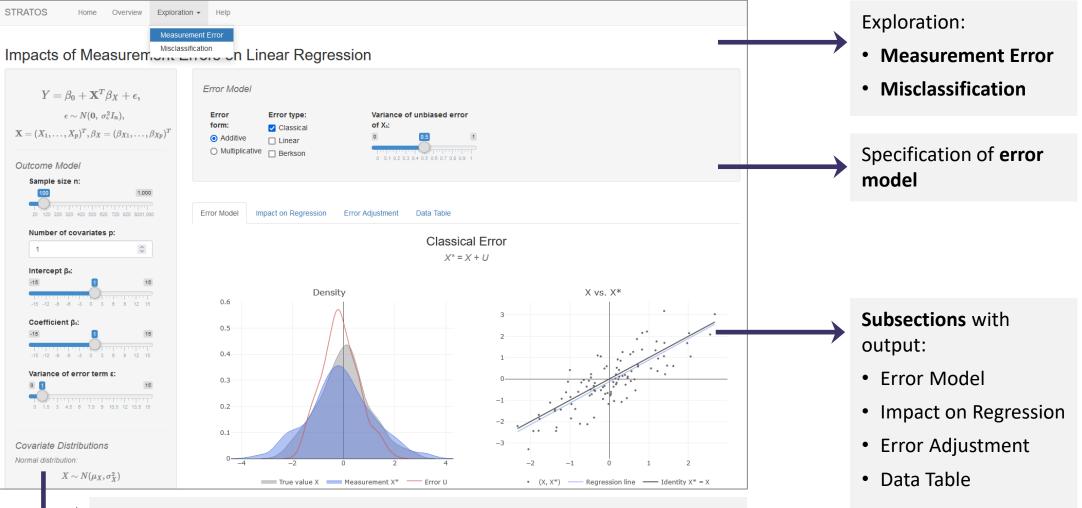
Simulation step:

For each value $s_1,\ldots,s_m\geq 0,$ B new pseudo-datasets are simulated by

$$X^*_{ib}(s_k) = X^*_i + \sqrt{s_k var(U)} U_{ibk}, \ i=1,\ldots,n; b=1,\ldots,B; k=1,\ldots,m$$

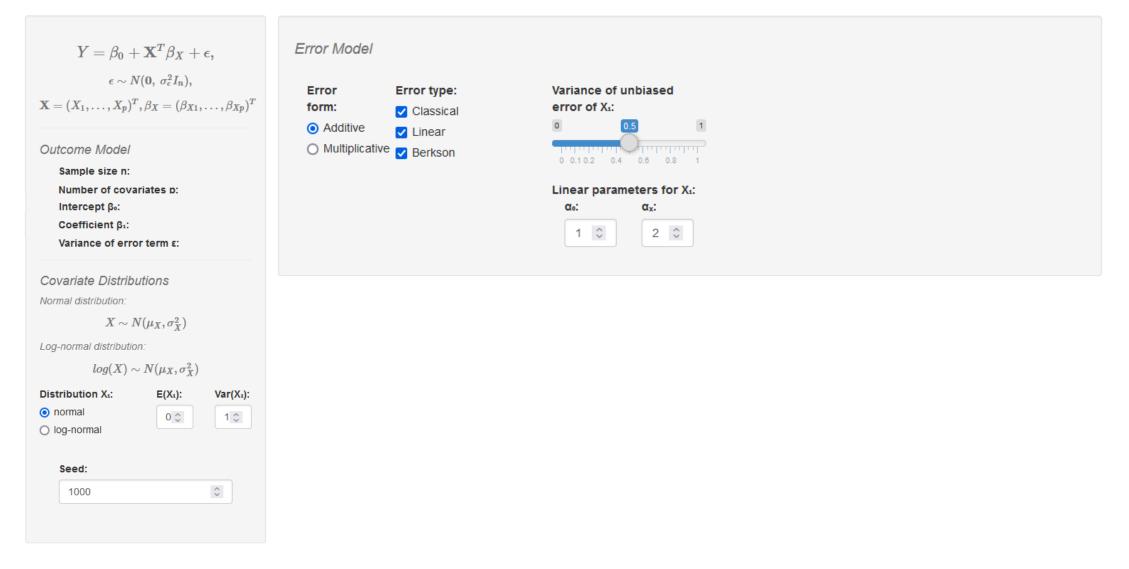
where U_{ibk} are *iid* standard normal variables. The measurement error variance of $X_{ib}^*(s_k)$ is therefore $(1 + s_k)var(U)$. For each pseudo-dataset, the unadjusted estimator based on Y and $X_b^*(s_k)$ is calculated and the results are averaged over the B repetitions, which leads to $\hat{\beta}_{X_{s_k}}^*$.

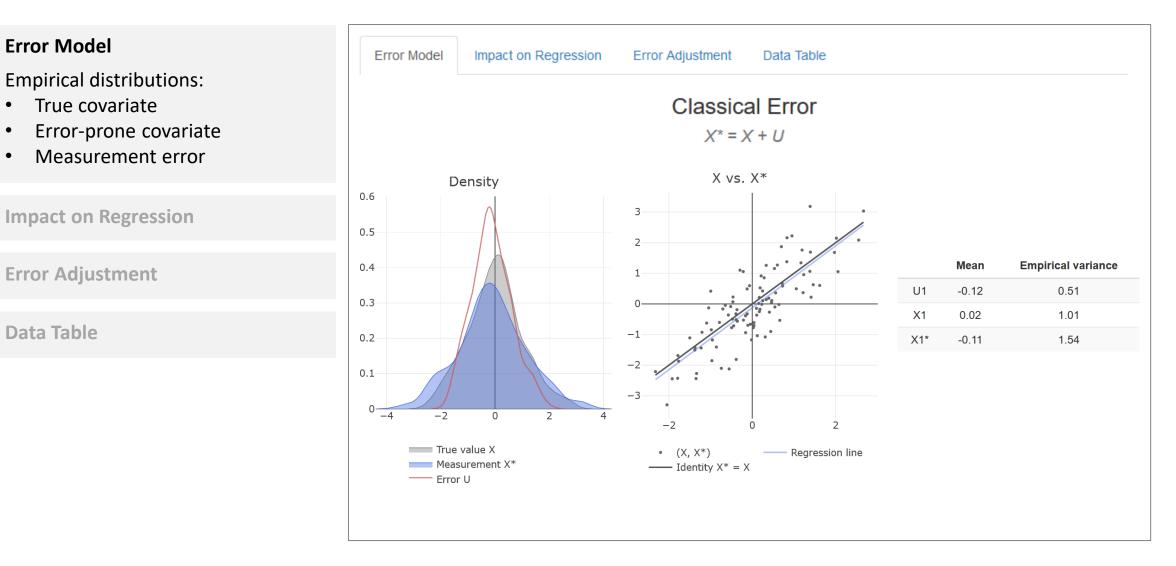
• Extrapolation step:


We use a parametric approximation for the function $\beta_X^*((1+s)var(U))$, denoted by $G(s,\Gamma)$, where Γ denotes the parameters of the function, e.g. in case of a quadratic approximation $G(s,\Gamma) = \gamma_0 + \gamma_1 s + \gamma_2 s^2$.

The parameters Γ are estimated by least squares and the estimated parametric function is then extrapolated to s = -1, the case of no measurement error, yielding the SIMEX estimator:

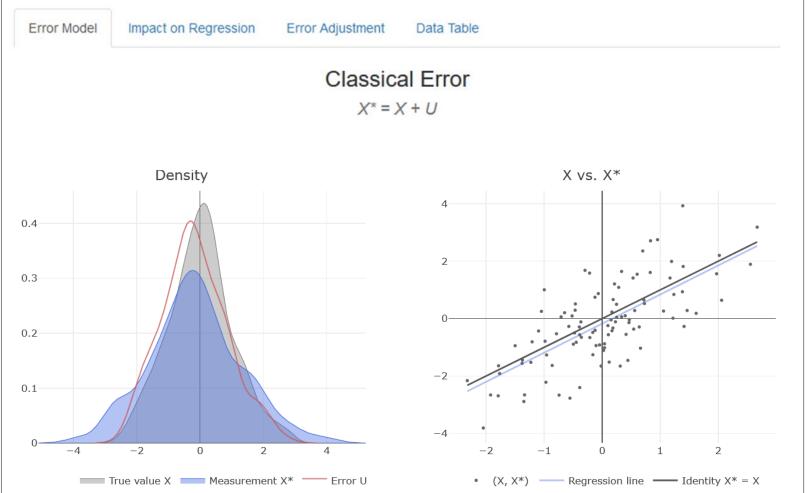
$$\widehat{eta}_{SIMEX} = G(-1,\widehat{\Gamma})$$


When eta_X is a vector, the SIMEX-procedure can be applied separately for each component.

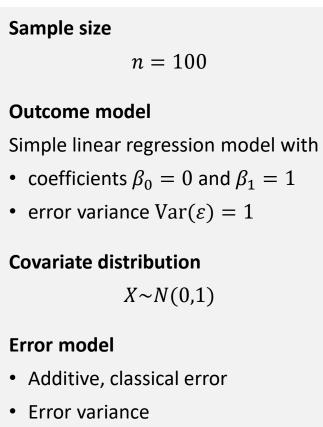

Exploration

Specification of sample size, outcome model and covariate distributions

Exploration – Input


Error Model	Error Model	Impact on Regression	Error	Adjustme	ent [Data Table
Impact on Regression						
Error Adjustment			La Dow	nload Da	ita Table	
Data Table			Header of simulated E			Data
 Excerpt of simulated dataset 			У	x1.x	x1.u	x1.classi
Download			-0.82	-0.45	-0.27	-0.
			-0.04	-1.21	0.28	-0.
			0.93	0.04	-0.65	-0.
			2.50	0.64	-0.66	-0.
			0.34	-0.79	0.18	-0.
			0.81	-0.39	-1.42	-1.

Example


Sample size Error Model n = 100**Outcome model** Simple linear regression model with • coefficients $\beta_0 = 0$ and $\beta_1 = 1$ • error variance $Var(\varepsilon) = 1$ 0.4 **Covariate distribution** 0.3 $X \sim N(0,1)$ **Error model** 0.2 • Additive, classical error

• Error variance

Example

Example

Summary & outlook

- Shiny app for interactive exploration of measurement error and misclassification
- Find MEM-Explorer here: https://mem-explorer.shinyapps.io/MEMExplorer-v5/
- Ideas for improvement are welcome: <u>vdeffner@bfs.de</u>

Future work

- Options to specify parameters in MEM adjustment methods
- Integration of further MEM adjustment methods
- Measurement error in the outcome

Bundesamt für Strahlenschutz

Impressum

Bundesamt für Strahlenschutz Postfach 10 01 49 38201 Salzgitter

Tel.: +49 30 18333-0 Fax: +49 30 18333-1885 E-Mail: ePost@bfs.de

www.bfs.de

Kontakt für Rückfragen

Dr. Veronika Deffner vdeffner@bfs.de 030/18333-2251