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Measurement error and misclassification in observational epidemiology

Situations with one or several mismeasured variables

Two cases:

1. Analysis of the association between two variables:

Y
?←→ X

Y ∗ Assessable association←→ X ∗

(observed) (observed)

2. Analysis of the distribution of a variable:

X ∼ ?
X ∗ ∼ Distribution (assessable)

I Impact on epidemiological analysis
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Example: Association between air pollution and human health

Health outcome ←→ Individual particle number concentration (PNC)

Health outcome ←→ PNC∗, e.g.
• Error-prone individual PNC measurement
• Ambient PNC

Results from Peters et al. (2015):

type 2 diabetes had been shown to be susceptible to air
pollution [2-4]. A study of controlled human exposures
to concentrated ultrafine particles showed immediate ef-
fects on subjects with metabolic syndrome, however, did
not observe changes in HRV one hour after the exposure
[30]. In contrast, in a study in subjects with type 2 dia-
betes indicated a decrease in the high frequency compo-
nent of heart rate variability and increased heart rates
persisting up to 48 hours [16]. Furthermore, there is an
emerging body of evidence linking ambient air quality as
one of the risk factors to type 2 diabetes [52]. Data from
controlled animal experiments [53] as well as analyses in
prospective population-based cohort studies [54-58] sup-
port this association. Systemic inflammation, activation of
innate immunity in the lung and an imbalance of the
autonomic nervous system induced by air pollution expo-
sures jointly potentially provide the link to insulin resist-
ance and diabetes exacerbation [52]. Sudden changes in

cardiac function may predispose susceptible individuals to
sudden cardiac deaths during episodes with elevated par-
ticle concentrations [59]. Most likely, different underlying
intrinsic mechanisms are activated by 5-minute PNC and
1-hour PM2.5. We hypothesize that shortly elevated PNC
may activate irritant receptors and lead thereby to changes
in the autonomic control [60]. In contrast, we hypothesize
that the changes in HRV observed in association with
PM2.5 are associated with an activation of host defense on
an alveolar level, which may involve translocation of par-
ticle components, immediate systemic oxidative stress re-
sponse and an activation of leukocytes [52].

Sensitivity analyses
Associations were robust in sensitivity analyses and a
summary is given in Figure 4 for the association be-
tween personally measured personal PNC and SDNN.
No statistically significant difference was observed in
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Figure 2 Effects of personally measured 5-minute PNC on SDNN based on 5-minute ECG recordings in patients with diabetes or impaired
glucose tolerance. Effect estimates are shown for an increase of 16,000 particles cm−3.

Table 4 Associations between ambient 1-hour average air pollution concentrations at the central monitoring site and
1-hour average ECG-measures

HR SDNN RMSSD

%-change 95% CI %-change 95% CI %-change 95% CI

Personal PNC 0.13 −0.19; 0.45 −0.93† −2.01; 0.16 0.53 −0.70;1.77

UFP 0.40 −0.16; 0.95 0.99 −0.66; 2.64 −0.12 −2.40; 2.21

ACP 0.35 −0.39; 1.09 −0.30 −2.23; 1.64 −1.58 −5.19; 2.18

PM10 0.67 −0.20; 1.54 −2.78* −4.98; −0.59 −5.00* −8.88; −0.95

PM2.5 0.63 −0.44; 1.71 −3.27* −5.84; −0.69 −6.86** −11.73; −1.72

Analyses considered concurrent exposures and adjusted for trend, meteorology and time of day. Effect estimates are shown for an increase in interquartile range
as given in Table 2.
†p-value <0.1, *p-value <0.05, **p-value <0.01, CI: confidence interval, HR: heart rate, RMSSD: root mean square of successive differences, SDNN: standard
deviation of NN-intervals, PNC: Particle number concentrations, PM10: particulate matter with an aerodynamic diameter <10μm, PM2.5: particulate matter with an
aerodynamic diameter <2.5μm, UFP: ultrafine particles (10-100μm); ACP: accumulation mode particles (100-800 nm).
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STRATOS TG4: Measurement error and misclassification

Chairs: Laurence Freedman, Victor Kipnis

Members:

Raymond Carroll Ruth Keogh
Veronika Deffner Helmut Küchenhoff
Kevin Dodd Pamela Shaw
Paul Gustafson Janet Tooze

Activities:

• Survey of current practice

• Development of guidance documents

– For epidemiologists, on nutritional epidemiology

– For statisticians with epidemiological background

Veronika Deffner et al.: Measurement error and misclassification 4



Literature survey of current practice

Aims:

• Assess current practice for addressing measurement error in observational
epidemiology

• Identification of knowledge gaps

Research areas:

• Dietary intake cohort studies (Pamela Shaw/Ruth Keogh)

• Dietary intake surveys (Kevin Dodd)

• Physical activity cohort studies (Janet Tooze)

• Air pollution cohort studies (Veronika Deffner/Helmut Kuechenhoff)
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Survey procedure

• Separate literature searches for each research area

• Two stages:

A: general search terms related to the research area

B: (only cohort studies,) search terms related to measurement error in addition to
the general search terms

• Data extraction via survey instruments

/ \
General questions Research-area-

for all research areas specific questions

• Quality control

→ Number of articles reviewed (A/B): Dietary intake cohort studies: 51 27
Dietary intake surveys: 67
Physical activity cohort studies: 30 39
Air pollution cohort studies: 50 25

• Analysis of the survey data
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Survey results

• Insufficient description of the measurement error, even if adequate data is
available

• Inadequate discussion of the impact of measurement error on the study results

• Several incorrect claims about the possible direction of the bias

Dietary intake Dietary intake Physical activity Air pollution
cohort survey cohort cohort

Mention ME as 48 (94%) 53 (79%) 17 (57%) 20 (40%)
potential problem N (%)
Used a method to 5 (10%) 19 (28%) 0 (0%) 3 (6%)
adjust for ME N (%)

• Rare use of methods which take measurement error into account in spite the
availability of adequate methods

• Multiple error-prone exposures not acknowledged
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Guidance document for statisticians

• General background on measurement error

• Effects of measurement error and misclassification on study results

• Guidance for taking measurement error and misclassification into account

– Study design

– Statistical analysis methods

– Software

– Special topics and practical advice

Veronika Deffner et al.: Measurement error and misclassification 8



Common error structures: classical and Berkson error

Classical measurement error

X ∗ = X + U

• E (U) = 0,X ⊥ U

• Example: error, when measuring the concentration of air pollutants

• Extension: linear measurement error

X ∗ = α0 + αXX + U

Berkson error

X = X ∗ + U

• E (U) = 0,X ∗ ⊥ U

• Example: error, when assigning ambient air pollutant concentrations to
individuals
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Classification of error: differential and non-differential error

Regression of X on Y : E(Y |X ) = f (X )

Differential error of X ∗

The distribution of Y |X does not equal the distribution of Y |X ∗,X

Example case-control studies: errors in the measurements (X ∗) depend on
the outcome (Y : case/control)

Differential error of Y ∗

The distribution of Y ∗|Y does not equal the distribution of Y ∗|Y ,X

Example comparison of the dietary intake between two groups: error in
reported dietary intake (Y ∗) differs by the group (X )
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Effects of measurement error on study results 56 
 

Table 1: Effects of measurement error according to type of error and target of the analysis 

Analysis Target Non-differential error 
Differential 

error 

  Classical Linear Berkson Any 

Regression with 

single error-

prone covariate  

Regression 

coefficient 

 

Underestimated 

 

Biased in either 

direction 

 

Unbiased 

 

Biased in either 

direction 

 

Test of null 

hypothesis 
Valid Valid Valid Invalid 

Regression with 

multiple error-

prone covariates 

Regression 

coefficients 

 

Biased in either 

direction 

 

Biased in either 

direction 

 

Unbiased 

 

Biased in either 

direction 

 

Tests of null 

hypothesis 
Invalid Invalid Valid Invalid 

Regression with 

error-prone 

outcome 

variable 

Regression 

coefficients 

 

Unbiased 

 

Biased in either 

direction 

 

Underestimated 

 

Biased in either 

direction 

 

Tests of null 

hypothesis 
Valid Valid Valid Invalid 

Distribution 

with an error-

prone 

continuous 

variable 

Mean 

 

Unbiased 

 

Biased in either 

direction 

 

Unbiased 

 

- 

 

Lower 

percentile 

 

Underestimated 

 

Biased in either 

direction 

 

Overestimated 

 

- 

 

Upper percentile Overestimated 
Biased in either 

direction 
Underestimated - 
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Effects of measurement error on study results
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Guidance: study design

1. Obtain information about the measurement error model and its parameters
by the use of validation studies:

– true values of the variable (reference instrument) and

– its error-prone values (test instrument)

2. Adaptation of the final design of the study to the presence of measurement
error

Classical covariate measurement error in a simple regression model:

nX∗ =
1

Corr(X ,X ∗)2
· nX

Example: Corr(X ,X ∗) = 0.9 ⇒ 1.23 times higher sample size
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Guidance: statistical analysis methods

Regression calibration

Regression using the predicted values of X based on X ∗ and Z

E(Y |X ∗,Z ) = β0 + βXE(X |X ∗,Z ) + βZZ

Moment reconstruction and moment-adjusted multiple imputation

Construction of a quantity with the same distribution as X based on the
moments of the joint distribution of (X ,Y )

XM(X ,Y ) = f (Ek(X ,Y )) , k = 1, 2, . . .

Multiple imputation

Consider the data
(X ,X ∗,Z ,Y ), which include an
internal validation subset, as a
problem of missing data and
impute X |X ∗,Z

1 24.60 1 24.60

2 21.28 2 21.28

3 14.82 3 14.82

4 0.93 4 0.93

5 8.59 5 8.59

6 NA 6 0.44

7 NA 7 1.59

8 NA 8 12.57

9 NA 9 28.63

10 NA 10 21.82

Original data Imputed Data

⇒
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Guidance: statistical analysis methods

Likelihood methods

1. Model as if X were observable

2. Error model

3. Distribution for X (only in the case of classical measurement error)

4. Likelihood of (Y ,X ∗) through combining steps (1)-(3)

f (y , x∗|z ,θ) =

∫
f (y |z , x , x∗,θ1) · f (x∗|z , x ,θ2) · f (x |z ,θ3)dµ(x)

Bayesian methods

Specification of models like for likelihood methods and in addition,
specification of prior distributions

f (θ|y , x∗, z) ∝
∫

f (y |z , x , x∗,θ1) · f (x∗|z , x ,θ2) · f (x |z ,θ3)dµ(x) · p(θ)
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Guidance: statistical analysis methods

SIMEX (simulation and extrapolation)

Estimate the relationship between the size of the classical measurement error
and the limits of the parameter estimates in naive regression and extrapolate
to the error-free case

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

●

●

●

●

●

●
β̂ X

*

1+s

1 + s: scaling factor of the measurement error variance (Var(U) · (1 + s))
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Guidance: software

Regression calibration

rcal (package merror) STATA Hardin et al. (2003a)
eivregl STATA Hardin et al. (2003a)
NCI macros SAS Kipnis et al. (2009)
%blinplusl SAS Rosner et al. (1990)
%relibpls8l SAS Rosner et al. (1992)
%rrcl SAS Liao et al. (2011)

SIMEX

simex, simexplot (package merror) STATA Hardin et al. (2003b)
package simex R Cook and Stefanski (1994),

Küchenhoff et al. (2006),
Lederer and Küchenhoff (2013)

package simexaft R Genz et al. (2011), He et al. (2007)
package hSIMEXUnknown R Delaigle and Hall (2008)

Bayesian methods

package BayesME R Sarkar et al. (2014a,b),
BUGS Lunn et al. (2000, 2009, 2012)
Stan Stan Development Team (2016a,b)
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Conclusion

• Inadequate treatment of measurement error and misclassification in
epidemiological analyses is commonplace

• Three steps of adequate treatment:

1. Consideration of potential measurement error at the design stage

2. Explicit statement of assumptions regarding measurement error and
exploration of its potential impact on the study results

3. Application of analysis methods which take measurement error into account

• STRATOS TG4 contributes to improving the consideration of measurement
error and misclassification in the statistical analyses of observational studies:

1. Overview of measurement error types and their impact

2. Overview and introduction of methods which take measurement error into
account
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