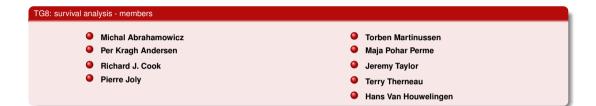
Analysis of time-to-event for observational studies: Guidance to the use of intensity models


On behalf of STRATOS TG8

Maja Pohar Perme

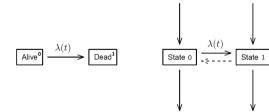
IBMI, University of Ljubljana

STRATOS mini-symposium, ISCB, 2020

The plan of this talk

Submitted paper:

ANALYSIS OF TIME-TO-EVENT FOR OBSERVATIONAL STUDIES: GUIDANCE TO THE USE OF INTENSITY MODELS

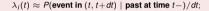

- Basic ideas and pitfalls of survival analysis, organized as checklists
- Hazard models and beyond
- Illustrative example patients with peripheral arterial disease

Survival analysis

Occurrence of a particular event in time

• $\lambda(t)$: intensity (hazard)

incomplete information: censoring or competing risk



Introduction

Preliminary issues

PH model

Intensity or hazard function

- dynamic description of how events occur in time
- can be estimated directly (assuming independent censoring assumption)
- inclusion of time-dependent covariates
- taking account of delayed entry
- conditionally dependent censoring

May be of interest in its own right, insufficient for some questions - absolute risk

 $\lambda(t) = -\frac{d\log S(t)}{dt}$

Survival analysis - notation

Standa	Standard notation					
	T _i : follow-up time					
0	δ_i : censoring indicator					
	V _i : entry time					
•	$Z_i(t)$: covariate vecor					

Counting process notation

For each individual i

- $Y_i(t)$: at risk indicator. Drops from 1 to 0 in case of event or censoring. In case of delayed entry: can be 0 at t = 0
- $N_i(t)$: counting events. Jumps from 0 to 1 in case of event occurrence.
- \bigcirc $Z_i(t)$: covariate vector

Our data example

Peripheral arterial disease

- Common circulatory problem, narrowed arteries, sign of atherosclerosis, increased risk for CV (cardio-vascular) events
- 742 PAD patients and 713 controls, Slovenia, 5 years of follow up
- Baseline data, measurements at each visit, endpoints
- Goal: survival of patients with PAD (in comparison to controls) despite optimal treatment

Preliminary concepts and issues

In general:

- Time origin: unambigously defined, comparable, clinically relevant. Defines time axis, multiple time axes may be relevant
- Inclusion criteria: must be met by the time the patient enters the study (Y(t) first becomes 1) - danger of immortal time bias
- Event definition: Clearly defined, the definition should be clear at the time of event (when N(t) switches to 1) danger of immortal time bias
- Censoring: We wish to estimate a complete, uncensored, population. Independent censoring assumption. Why was a patient censored?

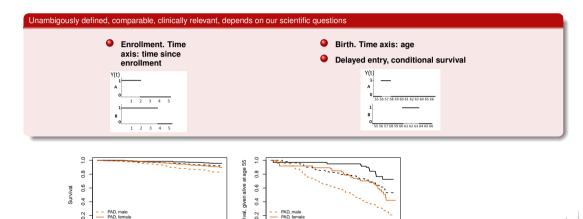
PAD example:

- Time origin: enrollment or birth, conditional survival in case of age as time axis.
- Inclusion criteria: PAD (and age-matched controls) at the time of enrollment. Ever or never PAD cannot be a criterium, time-varying covariate PAD could be
- Event definition: death (CV or non CV), major CV events(stroke, infarction), minor events (revascularization)
- Censoring: 5th visit after 5 years. Censored at 5 years. Non CV death as a competing risk.

Introd	uction
0000	

80 85

Age (years)


Preliminary concepts and issues - time origin

– Control, male

- Control female

Years since enrollment

0.0

- - Control, male

- Control female

0

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

220118

Introduction	Preliminary issues	PH model	Competing risks
		000	

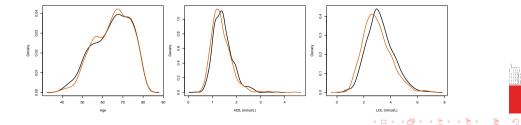
Proportional hazards models

Cox PH model

$\lambda(t|Z_i(t)) = \lambda_0(t) \exp(Z_i(t)^\top \beta)$

- Estimation: maximum partial likelihood
- Std. errors, tests as in classical likelihood
- Valid in simple and more general situation (factorization)

Alternatives


- Other PH models: parametric (constant, piecewise constant, Weibull, splines)
- Cox extensions: time-varying effects, stratified Cox
- Alternative models: additive hazards (Aalen), accelerated failure time (AFT) model

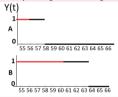
0000		PH model ○●○○	
Cox PH mode	əl		
Before fitting the model			
In general:		PAD example:	

- Check the covariates, check the dates
- ٠ Investigate covariate dependent censoring (Cox with censoring as the event): include such variables in the model
- Time-dependent covariates (extrapolation, external covariates, reverse causality bias)

PAD example:

- Covariates: PAD, Sex, Age, LDL, HDL
- Time-dependent covariates: carry last value forward

Intro	odu	icti	on


3311 1111 1111

Immortal time bias

The values of Z(t), N(t) and Y(t) should be defined so that they do not depend on N(s), Y(s) or Z(s) for s > t

Examples in PAD

Age axis: do not forget about delayed entry. Otherwise Y depending on N at a higher age.

Some controls are diagnosed with PAD at later visits. Do not exclude them from the control group. Options:

- PAD status can be time-fixed (value at enrollment)
- Time-dependent (current value)
- but NOT time-fixed at the value at the end of follow-up (ever PAD vs never-PAD). Example of Z depending on later values of itself

PH model ○○○● Competing risks

Fitting the Cox PH model - PAD example, part I

Event - death of any cause

The effect of PAD and sex (m vs f) - which time axis?

- Time since enrollment: add age (per 10 years, assume linearity)
- Age axis: add time since enrollment (FU, per year, assume linearity)
- Multiple axes: Poisson

Time since enroll			Age axis			Both axes				
	Cov	HR	95% CI	Cov	HŘ	95% CI	Cov	HR	95% CI	
	PAD	2.40	(1.71, 3.37)	PAD	2.40	(1.70, 3.37)	PAD	2.38	(1.70, 3.35)	
	Sex	2.00	(1.40, 2.86)	Sex	2.02	(1.42, 2.90)	Sex	2.01	(1.41, 2.88)	
	Age	1.93	(1.57, 2.37)	FU	1.18	(1.05, 1.33)				

PH model ○○○● Competing risks

Fitting the Cox PH model - PAD example, part I

Event - death of any cause

The effect of PAD and sex (m vs f) - which time axis?

- Time since enrollment: add age (per 10 years, assume linearity)
- Age axis: add time since enrollment (FU, per year, assume linearity)
- Multiple axes: Poisson

Time since enroll			Age axis			Both axes				
	Cov	HR	95% CI	Cov	HR	95% CI	Cov	HR	95% CI	
	PAD	2.40	(1.71, 3.37)	PAD	2.40	(1.70, 3.37)	PAD	2.38	(1.70, 3.35)	
	Sex	2.00	(1.40, 2.86)	Sex	2.02	(1.42, 2.90)	Sex	2.01	(1.41, 2.88)	
	Age	1.93	(1.57, 2.37)	FU	1.18	(1.05, 1.33)				

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

PH model ○○○● Competing risks

Fitting the Cox PH model - PAD example, part I

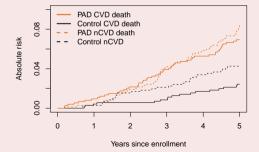
Event - death of any cause

The effect of PAD and sex (m vs f) - which time axis?

- Time since enrollment: add age (per 10 years, assume linearity)
- Age axis: add time since enrollment (FU, per year, assume linearity)
- Multiple axes: Poisson

Time since enroll			Age axis			Both axes				
	Cov	HR	95% CI	Cov	HŘ	95% CI	Cov	HR	95% CI	
	PAD	2.40	(1.71, 3.37)	PAD	2.40	(1.70, 3.37)	PAD	2.38	(1.70, 3.35)	
	Sex	2.00	(1.40, 2.86)	Sex	2.02	(1.42, 2.90)	Sex	2.01	(1.41, 2.88)	
	Age	1.93	(1.57, 2.37)	FU	1.18	(1.05, 1.33)				

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○


Preliminary issues

PH model

Competing risks analysis - PAD

Death of cardio-vascular reasons

- Non-CV cause: competing risk, not censoring (present in the complete population, elimination not of interest)
- Estimate probabilities: Aalen-Johansen

э

ヘロト 人間 トイヨト イヨト

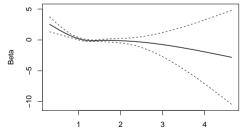
Competing risks

Fitting the Cox model - PAD example, part II

Competing risks

- Non-CV cause: can be treated at censoring in the Cox model (factorization of the likelihood)
- Time fixed or time-dependent covariates
- All CV causes (death + stroke, infarction)

	CV death			
	Ti	me-fixed		
	HR	95		
PAD	2.87	(1.65-5)		
Sex (m vs. f)	1.67	(0.97-2.88)		
Age (per10yrs)	1.93	(1.40-2.66)		
HDL (mmol/l)	0.74	(0.39-1.41)		
LDL (mmol/l)	0.92	(0.72-1.18)		

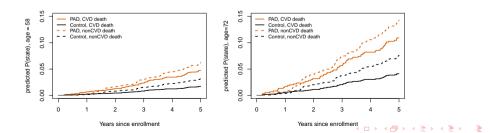


・ロト ・ 同ト ・ ヨト ・ ヨト - ヨー

After fitting the Cox model - PAD example, part III

Check assumptions

- Proportional hazards, linearity (continuous variables)
- Many methods available: Schoenfeld residuals, martingale residuals
- What to do if violated: confounder or the variable of interest (omission of strong predictors!)


Competing risks

After fitting the Cox model - PAD example, part IV

Reporting and interpretation

- If only HRs are reported no absolute risks can be obtained
- Competing risks: hazard vs probability
- Absolute risks: prediction from t = 0 onwards

		xed, other cause
	HR	95% CI
PAD	2.04	(1.31–3.19)
Sex (m vs. f)	2.12	(1.29 - 3.50)
Age (per 10 yrs)	1.93	(1.45-2.56)
HDL	0.82	(0.43 - 1.55)
LDL	1.02	(0.83-1.26)

Concluding remarks

The subtitles in the paper

- Preliminary concepts and issues
- The intensity
- Proportional hazard models and alternatives
- A check-list when fitting the Cox model
- Immortal time bias
- Prediction in the absence/presence of competing risks
- Issues in causal inference
- Illustrative applications + supplement with code

Analysis of time-to-event for observational studies: Guidance to the use of intensity models

Per Kragh Andersen¹ | Maja Pohar Perme^{*2} | Hans C. van Houwelingen³ | Richard J. Cook⁴ | Pierre Joly⁵ | Torben Martinussen¹ | Jeremy M.G. Taylor⁶ | Michal Abrahamowicz⁷ | Terry M. Therneau⁸ | for the STRATOS TG8 topic group

