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Introduction

 In epidemiology, there are many measurements that are difficult to obtain 

directly:

• Expensive (Resting Energy Expenditure)

• Burdensome (24-hour urinary sodium)

• Impossible (Usual energy intake) 

 One strategy is to use prediction equations to measure them indirectly

 Many analyses proceed with predicted values as if they were observed data

 Using predicted values instead of observed data in study analyses can corrupt 

study results if the (Berkson) prediction error is not handled appropriately
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Planning a series of papers examining issues that arise 

when predicted values are used in data analysis:

 Paper 1: Introductory concepts + Example of estimating of a distribution

 Paper 2: Analytical issues that arise when applying regression calibration
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Paper 1: Introduction + Estimation of a distribution

• Consider setting where have an error prone X* and use a predicted 

value 𝑋 to correct for systematic and random error

• Introduction to prediction error as Berkson measurement error 

X = 𝑋 + error

• Examine effects of ignoring prediction/Berkson error when estimating a 

distribution

• Present a simple, novel method to handle Berkson error in this setting

• Concepts illustrated with simulated data where truth is known

• Data example from a complex survey design 
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A simple fix for Berkson error

 A fundamental attribute of predicted values is their Berkson error makes 

them less variable than they should be

 A simple fix is to add back the missing variance to the calibrated value.

• This can be accomplished from simulating error e ~ (0,𝜎2)

• 𝑋𝑖𝑚𝑝 = 𝑋 + e

• A multiple imputation approach is applied to estimate quantities (Baldoni et al 2021)

– Applied in the context of a complex survey design
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Simulation study results
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Berkson error biases quantiles and standard errors

X 𝑋
𝑋𝑖𝑚𝑝

%-tile Mean ESE CP Mean ESE CP Mean ESE CP 

25th -0.672 0.043 94.8 -0.501 0.079 8.0 -0.679 0.089 96.6

50th -0.001 0.039 96.1 -0.002 0.067 6.0 -0.002 0.074 97.4

75th 0.674 0.043 94.5 0.498 0.078 8.3 0.675 0.087 96.5
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Example from the Hispanic Community Health Study
(Lavange et al 2010)

Question of interest: Does sodium intake vary by Hispanic ethnicity?

HCHS main cohort: n = 16,415 (Chicago, Miami, New York, San Diego)

Male: 40%

Age: mean 43y; range: 18-74y

Main dietary assessment X*: two 24-hour recalls, known to be subject 

to bias

SOLNAS: Calibration sub-study: n = 477

Biomarkers X**: Doubly-labeled water (energy) and 24-hour urinary 

markers (protein, potassium, sodium) were obtained to create calibration 

equations that correct for the measurement error/bias in self-reported sodium

(Mossavar-Rahmani et al 2017 )
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Similar results seen in HCHS/SOL
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Paper 2: Analytical issues that arise when applying 

regression calibration (RC)

• RC is the most common method to address covariate measurement error

• RC involves replacing unobserved error-free covariate X with a predicted 

value in outcome model (e.g. 𝑋=E[X|X*,Z] )

• Analytical issues generalize setting with a predicted covariate in a 

regression model
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Considerations for analysis 

Regression calibration relies on:

 All the covariates in the outcome model to be in the calibration model

 Prediction error independent of the outcome 

 Adjustment to the standard error calculation to account for extra uncertainty

• The usual standard errors from regression software are too small

• The bootstrap or sandwich estimators are two options. 

 Interesting analytical issues arise if there is a mediator in the model
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Regression calibration and mediation: a dilemma

 Generally, if you are interested in the total effect of X on Y then you should not 

include M in the outcome model

 If M is an important variable in the calibration model, it should generally be 

included in the outcome model to avoid bias when applying regression 

calibration

Example:

BMI is one of the strongest predictors of energy intake and may mediate the 

effect of energy intake on outcomes like heart disease, cancer, diabetes
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Mediation

Some notation

 Y = outcome variable

 X = exposure of interest

 Z = confounder(s)

 M = mediator

The models

 M = γ0 + γXX+ γZZ+ δ, (1) Mediation model

 Y = β0 + βXX+ βZZ+ βMM+ ε, (2) Outcome model

Substituting the right-hand side of equation (1) for M in equation (2), we get

 Y = ෨β0 + ෨βXX + ෨βZZ + ε, where ෩𝛃𝐗 = β𝐗 + β𝐌γX

Where βX is the direct effect, and βMγX is the indirect effect 

(this method is approximate for non-linear models)
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Addressing Mediation with Regression Calibration

The Models:

 M = γ0 + γXX+ γZZ+ δ, (1) Mediation model

 Y = β0 + βXX+ βZZ+ βMM+ ε, (2) Outcome model

Midthune Method (Freedman et al (2011))

Step 1 Estimate γX from equation (1) using RC to adjust for ME

Step 2: estimate βX and βZ from equation (2) using RC to adjust for ME

Step 3: Estimate ෨βX using the equation ෨βX = βX + βMγX.  
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Mediation Results from HCHS/SOL

Method of Estimation OR 95% CI

Including BMI in 

outcome model
0.85 0.46 – 1.58

Omitting BMI from 

outcome model
3.76 3.03 – 4.67

Midthune’s method 1.52 1.02 – 2.25

Binary Outcome Y: High risk for metabolic syndrome 

Exposure of interest X: Energy Intake – estimated OR for 20% increase 

Mediator M: BMI

X*: self-reported intake using 24 hour recalls

Z: age, Hispanic/Latino background, education, income, and current smoking. 
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Discussion

 There is increasing use of prediction and calibration equations in medicine

•Naïve analyses with predicted outcomes are subject to multiple biases

• Presented methods do not address when error is differential

• Awareness of the effects of Berkson error and methods to adjust for it need 

more attention
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