Measurement Error in Nutritional Epidemiology: Impact, Current Practice for Analysis, and Opportunities for Improvement

Pamela Shaw
shawp@upenn.edu
on behalf of STRATOS TG4

10 May, 2017
9th EMR-IBS, Thessaloniki
Outline

• Background
• Motivating examples showing impact of Measurement error
• Regression calibration
• Literature survey: methodology and results
• Conclusions
STRATOS TG4: Measurement Error and Misclassification

MEMBERSHIP

• Laurence Freedman, Gertner/IMS, Co-Chair
• Victor Kipnis, NCI, Co-Chair
• Raymond Carroll, Texas A&M U
• Veronika Deffner, Munich, LMU
• Kevin Dodd, NCI
• Paul Gustafson, U. British Columbia
• Ruth Keogh, London School of Hygiene
• Helmut Kuechenhoff, Munich, LMU
• Pamela Shaw, U. Pennsylvania
• Janet Tooze, Wake Forest School of Medicine
TG4 Projects

1. Literature Survey for how measurement error is addressed in 4 types of epidemiological studies

2. Guidance paper for nutritional epidemiologists

3. Guidance paper for biostatisticians
TG4 Literature Survey

• There have been many statistical advances to address in measurement error in the past few decades

• TG4 was interested in assessing the current practice for acknowledging and addressing measurement error in epidemiologic/observational studies
 – Want to identify knowledge gaps and opportunities for improvement

• We conducted a literature survey focused on types of epidemiologic studies with exposures that are well known to be subject to measurement error
Example 1: Classical Measurement error

- Classical measurement error (CME) is random, mean zero error
- Covariate X^* with CME can be written as: $X^* = X + u$, where u is mean 0 error term independent of X and Y
- Suppose $Y = \beta_0 + \beta_1 X + \varepsilon$, then regressing Y on X^* will estimate slope $\beta_1^* \neq \beta_1$
- β_1^* will be attenuated toward 0

\[\beta_1^* = \lambda \beta \] , where
\[\lambda = \frac{\text{var}(X)}{\text{var}(X) + \text{var}(u)} \]
So $0 < \lambda < 1$
Example 2: Measuring Dietary Intake

• Measuring dietary intake is of interest in epidemiology as there are a number of diseases for which dietary factors are thought to be important risk factors, including cancer, heart disease and diabetes.

• Dietary intake is a complex exposure to measure
 – Made up of many nutrients obtained from a variety of foods
 – Contains day-to-day variability, possibly also temporal variability

• There are several prevailing dietary assessment methods
 – Self-report: Food frequency questionnaire, 24hour recall, daily food record
 – Objective biomarkers: recovery or concentration markers
Measuring Energy Intake

Biomarker Energy

Visit 2

Visit 1

\(\rho = .72 \)

FFQ Energy

Visit 2

Visit 1

\(\rho = .70 \)
Energy Intake vs Body Mass Index

Neuhouser et al AJE 2008

APPENDIX TABLE.

Estimates of energy intake (kcal/day) obtained by self-reported food frequency questionnaire, a biomarker (total energy expenditure), and a calibrated food frequency questionnaire, according to body mass index category, Women’s Health Initiative Nutritional Biomarkers Study, 2004–2005*

<table>
<thead>
<tr>
<th>Body mass index† category</th>
<th>Self-reported FFQ‡</th>
<th>Total energy expenditure</th>
<th>Calibrated FFQ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Geometric mean</td>
<td>IQR‡</td>
<td>Geometric mean</td>
</tr>
<tr>
<td>Normal (<25.0)</td>
<td>1,407</td>
<td>1,157–1,759</td>
<td>1,894</td>
</tr>
<tr>
<td>Overweight (25.0–29.9)</td>
<td>1,462</td>
<td>1,196–1,837</td>
<td>2,043</td>
</tr>
<tr>
<td>Obese (≥30)</td>
<td>1,454</td>
<td>1,161–1,897</td>
<td>2,213</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,247</td>
</tr>
</tbody>
</table>

* Note that the difference between FFQ energy intake (self-report) and total energy expenditure (biomarker) increases as body mass index increases. The biomarker-calibrated estimates, for the same women, correct for the measurement error using the model shown in table 4.

† Weight (kg)/height (m)².

‡ FFQ, food frequency questionnaire; IQR, interquartile range (25th–75th percentiles).
Regression Calibration:
A simple approach to adjust for ME

Prentice Biometrika 1982

• Suppose true intake: \(X \)
• Error-prone measure: \(X^* \) (FFQ intake)
• Objective biomarker: \(X^{**} = X + u \)
• Predicted \(X = E(X^{**} | X^*, Z) = E(X+u | X^*, Z) = E(X | X^*, Z) \)
 \[= a_1 + a_2 X^* + a_3 Z + a_4 Z X^*\]

Regression calibration: Regress outcome \(Y \) on predicted intake, other covariates \(Z \)
HR for Uncalibrated vs Calibrated Energy Intake
Prentice, Shaw et al AJE 2009
Survey Areas

Each of four topic areas had its own literature search

• Nutritional intake cohort studies (Pamela Shaw/Ruth Keogh)
• Dietary intake population surveys (Kevin Dodd)
• Physical activity cohort studies (Janet Tooze)
• Air pollution cohort studies (Veronika Deffner/Helmut Kuechenhoff)
Overall Approach

• Focused on error-prone variable as exposure in analysis

• For cohort studies, literature search done in two stages
 – **Search A**: Survey recent articles to assess how often articles acknowledged and/or addressed measurement error
 – **Search B**: Survey recent articles that adjusted for measurement error to describe methods in current practice

• Questionnaires filled out for each reviewed article

• Excluded reviews, cross-sectional studies, case-control studies and meta-analyses

• Each topic area conducted a quality control review
 – 20% re-reviewed by independent reviewer
Nutritional Epidemiology
Cohort Studies: Survey Methodology

• Date Range A: Feb 2014-Jun 2015; B: Jan 2001-Jul 2015

• Limited search to three common diseases with dietary risk factors: cancer, heart disease and diabetes
 – Restricted date range to find about 50 articles from Search A and 30 articles from Search B

• Search B: added (measurement error OR misclassification to Search A
 – Not many articles, so did additional key word searches including: (measurement error OR misclassification) AND nutritional epidemiology

• Physical activity and pollution cohort methodology similar, except relied on date range and random sampling to reduce number of articles reviewed
Number of Articles Reviewed*

<table>
<thead>
<tr>
<th>Category</th>
<th>Search A</th>
<th>Search B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutritional Epidemiology cohort studies</td>
<td>51</td>
<td>27</td>
</tr>
<tr>
<td>Dietary Intake Population Survey</td>
<td>67</td>
<td>N/A</td>
</tr>
<tr>
<td>Physical Activity cohort studies</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Air Pollution cohort studies</td>
<td>50</td>
<td>25</td>
</tr>
</tbody>
</table>

* Number in table excludes articles that were identified by search terms but upon closer examination did not meet inclusion criteria
Search A Survey Results

<table>
<thead>
<tr>
<th></th>
<th>Nutritional Epi Cohort N= 51</th>
<th>Phys activity Cohort N=30</th>
<th>Diet Intake Survey N=67</th>
<th>Pollution Cohort N=50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mention ME as potential problem n(%)</td>
<td>48 (94%)</td>
<td>17 (57%)</td>
<td>53/67 (79%)</td>
<td>20 (40%)</td>
</tr>
<tr>
<td>Used a method to adjust for ME N (%)</td>
<td>5 (10%)</td>
<td>0 (0%)</td>
<td>19/67 (28%)</td>
<td>3 (6%)</td>
</tr>
<tr>
<td>% categorizing exposure</td>
<td>Any 50/51(98%)</td>
<td>Primary exposure</td>
<td>Any 53/67 (79%)</td>
<td>Any 20 (40%)</td>
</tr>
<tr>
<td></td>
<td>Exclusively 27/51 (53%)</td>
<td></td>
<td>Exclusively 19/67 (28%)</td>
<td>Exclusively 3 (6%)</td>
</tr>
<tr>
<td>Statistic of main interest N (%)</td>
<td>HR 45 (88%)</td>
<td>HR 11 (37%)</td>
<td>Mean 51 (76%)</td>
<td>HR 11 (37%)</td>
</tr>
<tr>
<td></td>
<td>OR 3 (6%)</td>
<td>OR/RR 9(30%)</td>
<td>Median 28(42%)</td>
<td>OR 3 (6%)</td>
</tr>
<tr>
<td></td>
<td>RR 2 (4%)</td>
<td>GLM 5 (17%)</td>
<td>%-tiles 21(31%)</td>
<td>RR 2 (4%)</td>
</tr>
<tr>
<td></td>
<td>Slope 5(10%)</td>
<td>Other 5 (17%)</td>
<td>Quality 31(46%)</td>
<td>Slope 5(10%)</td>
</tr>
</tbody>
</table>
Methods to Address Measurement Error

<table>
<thead>
<tr>
<th>Nutritional Epi Cohort</th>
<th>Phys Activity Cohort</th>
<th>Dietary Intake Pop. Survey</th>
<th>Pollution Cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>N= 27*</td>
<td>N=40</td>
<td>N=67</td>
<td>N= 25</td>
</tr>
<tr>
<td>Regression Calib. 26 (96%)</td>
<td>Regression Calib. 1 (50%)</td>
<td>NCI 10(53%)</td>
<td>Sens Analysis 4 (80%)</td>
</tr>
<tr>
<td>SIMEX 1 (4%)</td>
<td>Other 1 (50%)</td>
<td>Means 7(37%)</td>
<td>Instr Variables 1 (20%)</td>
</tr>
<tr>
<td>Other 1 (4%)</td>
<td>Other 1 (50%)</td>
<td>ISU 1 (5%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MSM 1 (5%)</td>
<td></td>
</tr>
<tr>
<td>Search A: None 90%</td>
<td>Search A: None 95%</td>
<td>Search A: None 72%</td>
<td>Search A: None 94%</td>
</tr>
</tbody>
</table>

- Number excludes articles that were identified by search terms but upon review did not use a method to correct for error.
- Row percents do not add to 100% due to use of multiple methods.
Other Observations from Diet and Physical Activity Cohort Surveys

• Common in the cohort studies to have multiple covariates with error: eg diet + physical activity, smoking, and/or alcohol intake
 – Many adjust for both diet+ PA, only 1 article adjusted for error in both physical activity (Zhang et al, AJE 2014)
 – Errors in smoking/alcohol not addressed

• Most categorized the continuous exposures
 – Impacts of categorizing an exposure subject to error are ignored
 – Common belief: categorization will lower impact of measurement error in the analysis

• Most people who mentioned error as a problem made an incomplete/incorrect claim
 – Many only mentioned attenuation in found associations
 – Some claimed no bias in associations since prospective subject recall
 – Some claimed no bias since instrument was validated
Other observations from Dietary Intake Population Surveys

• Most studies (80%) used 24HR as primary instrument
 – 31/53 used only 1 24HR, rest had repeats on at least a subsample
 – 8/31 (26%) reported percentiles subject to bias

• 16/31 papers with 1 24HR mentioned that usual intake or adjustment for within-person variation was needed

• 8/11 (73%) of papers using multiple 24HRs to report medians/percentiles, used a complex method (NCI/MSM)
Other Observations from the Air Pollution Cohort Survey

• Statements about the measurement error are often vague
 – The origin of the measurement error is often not clearly specified
 – The size and the impact of the measurement error is often not stated

• Measurement error is often mentioned but rarely addressed in detail or corrected
 – The majority of the studies use daily and spatially aggregated data
 – The often prevailing Berkson error (through temporal and spatial aggregation) is not or only insufficiently described and its implications are not discussed
 – Errors originating from staying in different microenvironments are often neglected or only poorly considered

• Many different exposure measures are analyzed separately or jointly; a homogeneous procedure is lacking
Conclusions

• In cohort studies: measurement error acknowledged, but implications not fully understood and commonly not addressed in statistical analysis
 – Very few used methods to adjust for measurement error
 – For PA studies, little motivation to adjust for error since the naïve associations are generally aligned with a priori hypotheses
 – Many studies had multiple variables measured w/error

• In dietary intake population surveys: minority corrected for measurement error
 – Majority of those that did apply a correction method were taking advantage of software (e.g. NCI method)

• Regression calibration most common method to address measurement error in diet and PA studies
More work is needed....

• Identify the various sources of measurement error
• Disseminate ideas of measurement error correction
 – Discussion of software in guidance documents, tutorials in clinical journals, talks at epi and clinical conferences
• Correct misconceptions, such as:
 – Random error won’t cause bias in associations
 – Attenuation is the only possible direction of bias
 – Categorization reduces the effect of measurement error
 – Validated questionnaires don’t have bias
 – Software is not available
References

Regression Calibration

Simex

References (2)

Iowa State University Method (ISU)

Multiple Source Method (MSM)

NCI Method
Dietary Intake Population Studies: Survey Methodology

• Date range: Jan 2012 – May 2015

• Term “Measurement error” not typically referred to in dietary intake surveys
 – Understood as variance around usual intake
 – Conducted Search A only
Physical Activity Cohort Studies: Survey Methodology

• Date range: Jan 2012 – Sep 2015

• Search A: Very broad search terms: N=8760 from search; randomly selected N=610; N=51 from abstract review

• SEARCH B: Added "measurement error" OR misreport* OR misclassif* OR bias OR attenuat* OR calibrat*
 – N=610 from search; N=86 from abstract review
Air Pollution Cohort Studies: Survey Methodology

• Date range: Jan 2012 – Dec 2014
• Search A broad search within „Web of Science“:
 – Search B Additional keywords: "measurement error", "measurement uncertainty", misclassif*, attenuat*
 – A: 4595 hits, B: 386 hits
• After abstract review: A: 431 hits, B: 32 hits
• Random selection: Search A: 50/Search B:25